Optimal Quadrature Formula for Approximate Calculation of Singular Integrals with Hilbert kernel

Authors

  • Kh.M. Shadimetov Tashkent State Transport University Author
  • Kh.Kh. Jabborov V.I.Romanovskiy Institute of Mathematics, AS RUz Author

Keywords:

singular integral, Hilbert kernel, error functional, optimal quadrature formula, extremal function, differential operator, optimal coefficients

Abstract

Many mathematical models in science and technology have been reduced to the approximate calculation of singular integrals with Cauchy and Hilbert kernels and the approximate solution of integral equations. In this paper, an optimal quadrature formula for approximate calculation of singular integrals with a Hilbert kernel in the Sobolev space is constructed and analytical formulas for coefficients that minimize its error are obtained from among the coefficients of the quadrature formula. For this, the discrete analogue of the second-order differential operator is used. The resulting quadrature formula is exact to a first-order polynomial.

References

Sobolev S.L. 1974. Introduction To the Theory of Cubature Formulas. Nauka, Moscow,

Shadimetov Kh.M. 2019. Optimal lattice quadrature and cubature formulas in Sobolev spaces. Tashkent: Publishing house “Fan va texnologiya”, – 224 p.

Kolmogorov A.N., Fomin S.V. 1981. Elements of the theory of functions and functional analysis. Nauka, Moscow, – 544 p.

Gradshtein I.S. and Ryzhik I.M. 1963. Tables of integrals, sums, series and products. Moscow

Lifanov I.K. 1995. Method of singular equations and numerical experiment (in mathematical physics, theory of elasticity and diffraction). - TOO "Janus, Moscow, – 205 p.

Zigmund A. 1965. Trigonometric series. Mir, Moscow, – T. 1. – 615 p.

Shadimetov Kh.M. 2002. Construction of weight lattece optimal quadrature formulas in the space ????(????)2 (0,????), Siberian J. of Numerical Mathematics, Novosibirsk, – Vol.5, – no 3. – P. 275–293.

Hayotov A.R., Jeon S., Shadimetov Kh.M. 2021. Application of optimal quadrature formulas for reconstruction of CT images, J. Comput. Appl. Math. 388, 113313.

Boltaev N.D., Hayotov A.R., Shadimetov Kh.M. 2017. Construction of optimal quadrature formulas for Fourier coefficients in Sobolev space ????????2 (0, 1).Numer. Algorithms, 74, – P. 307-336.

Shadimetov Kh.M. 2010. Discrete analogue of the operator ????2???? ????????2???? and its construction// Questions of computational and applied mathematics.: Tashkent, – P. 22–35. www.Arxiv.org January(math.NA).

Shadimetov Kh.M. 2002. Construction of weighted optimal quadrature formulas in space.: Sib ZHVM. – Novosibirsk, – T. 5, – No. 3. – P. 275–293.

Shadimetov Kh.M. 2019. Optimal lattice quadrature and cubature formulas in Sobolev spaces.T.: Fan va texnologiya, – 224 p.

Boykov I.V. 2005. Approximate methods for calculating singular and hypersingular integrals: P 2. Penza: Penz State Technical University Publishing House, – 377 p.

Chawla M.M. 1977. Estimating Errors of Numerical Approximation for Periodic Analytic Functions/ M.M. Chawla, R.Kress/: Computing. – V. 18. – P. 241–248.

Chawla M.M. 1974. Numerical Evaluation of Integrals of Periodic Functions With Cauchy and Poisson Type Kernels //Numerische Mathematik / M.M.Chawla, T.R. Ramakrishnan: – V.22. – P. 317–323.

Gaier D. 1964. Konstruktive Methoden der Konformen Abbildung. - Berlin-Heidelberd: Springer, – 294 p.

Downloads

Published

2025-01-03

Issue

Section

Статьи