Optimal quadrature formula for calculating Fourier coefficients in Hilbert space
Keywords:
quadrature formula, Fourier coefficients, error functional, extremal functionAbstract
This paper discusses the construction of an optimal quadrature formula based on a functional approach for the numerical calculation of Fourier coefficients. In this case, first we solve the boundary value problem for the extremal function of the quadrature formula. Using the extremal function, the form of the norm of the error functional is found. The norm of the error functional depends on the coefficients and nodes. We find the minimum value of the norm of the functional based on the coefficients with given nodes. Thus, we will construct an optimal quadrature formula with in the Hilbert space. The order of approximation of the constructed quadrature formula is ????(ℎ^3) and this formula is exact for the hyperbolic sine, hyperbolic cosine and constant number.
References
Milovanovi’с G.V. "Quadrature processes - development and new directions" Bulletin (Acad’emie serbe des sciences et des arts. Classe des sciences math’ematiques et naturelles. Sciences math’ematiques), – No. 33 – 2008. – P. 11–41 – 31 p. https://www.jstor.org/stable/44095600.
Hayotov A.R., Milovanovi’с G. V., Shadimetov Kh.M. Optimal Quadrature Formulas and Interpolation Splines Minimizing the Semi-Norm in the Hilbert Space ????2 (????2) . Analytic Number Theory, Approximation Theory, and Special Functions. – 2014. – P. 573–611.
Shadimetov Kh.M., Hayotov A.R. and Bozarov B. Optimal quadrature formulas for oscillatory integrals in the Sobolev space. // Journal of Inequalities and Applications, 103 – 2022. – P. 1–21. https://doi.org/10.1186/s13660-022-02839-4
Hayotov A.R., Khayriev U.N. Optimal quadrature formulas in the space ̃︁????????,????−1 2 of periodic functions. // Vestnik КRAUNC. Fiz.-Mat. nauki, – 2022. – vol. 40, – no. 3, – P. 211–226. https://doi.org/10.26117/2079-6641-2022-40-3-211-226
Hayotov A.R., Khayriev U. N. Construction of an Optimal Quadrature Formulain the Hilbert Space of Periodic Functions. // Lobachevskii Journal of Mathematics, – 2022. – Vol. 43, – No. 11, – P. 3151–3160.
Alberg J., Nilson E. and Walsh J. Spline theory and its applications. // - 3rd ed. Reading, MA: Mir, Moscow, – 1972. – 316 p.
Hayotov A.R., Kurbonnazarov A.I. An optimal quadrature formula for the approximate calculation of Fourier integrals in the space ????(3) 2 (0, 1) . // Problems of computational and applied mathematics. – – No. 3/1(50) – 2023. – P. 183–196.
Kurbonnazarov A.I. Properties of the discrete analogue of the differential operator. // - Problems of computational and applied mathematics, – № 3/1(50) – 2023. – P. 20–29.
Sobolev S.L.. The coefficients of optimal quadrature formulas, Selected Works of S.L. Sobolev. // Springer, – 2006. – P. 561–566.
Hayotov A.R., Ahmadaliev G.N. A discrete analogue of the differential operator. // Uzbek mathematical journal, – 2017. – P. 10–12.
Ахмадалиев Г.Н. Погрешность оптимальной квадратурной формулы в одном гильбертовом пространстве. // Проблемы вычислительной и прикладной математики, – 2022. – № 5/1(44). – C. 5–13.
Boltaev N.D., Hayotov A.R., Milovanovi’с G. V. and Shadimetov Kh.M. Optimal quadrature
formulas for Fourier coefficients in ????(????,????−1) 2 space. // Journal of Applied Analysis and Computation, – vol. 7, – Num. 4, – 2017. – P. 1233–1266.
Filon L.N.G. On a quadrature formula for trigonometric integrals. // Proc. Roy. Soc. Edinburgh, 49, – 1928. – P. 38–47.
Schoenberg I.J. On monosplines of last deviation and best quadrature formulae // J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2, – 1965. – P. 144–170.
Olver S. and Hall T. Numerical Approximation of Highly Oscillatory Integrals. // 2nd ed. Reading, MA: University of Cambridge, – 2008. – 158 p. (in English)
Iserles A. and Norsett S.P. Efficient quadrature of highly oscillatory integrals using derivatives. // Proc. R. Soc. A, – 2005. – P. 1383–1399.
Соболев С.Л. Введение в теорию кубатурных формул. М. Наука, – 1974. – 808 с.
Atkinson K. and Han W. Theoretical Numerical Analysis. Springer. Textbook. USA, – 2000. – P. 83–84.
Trefethen L.N.. Exactness of Quadrature Formulas. SIAM Review, – 2022. – vol. 64, – P. 1–17.
Laudadio T., Mastronardi N., Occorsio D. Computing integrals with an exponential weight on the real axis in floating point arithmetic. Applied Numerical Mathematics, – 2023. – P. 309–317.
Bultheel A., Cantero M.J., Cruz-Barroso R. Matrix methods for quadrature formulas on the unit circle. A survey.Journal of Computational and Applied Mathematics, – 2015. – P. 78–100.
Hinrichs A., Krieg D., Novak E, Vyb’ıral J. Lower bounds for the error of quadrature formulas for Hilbert spaces. Journal of Complexity, – Volume 65, 101544. – 2021.
Ogbereyivwe O and Ojo-Orobosa V.. High Order Quadrature Based Iterative Method for Approximating the Solution of Nonlinear Equations. Caspian Journal of Mathematical Sciences, – 2020. – P. 243–255.
Gander M.J., Lunet T. ParaStieltjes: Parallel computation of Gauss quadrature rules using a Parareal-like approach for the Stieltjes procedure.Numerical linear Algebra with Applications, – 2020. – P. 1–17.
Homeier H. H. H., Srivastava H. M., Masjed Jamei M., Moalemi Z. Some weighted quadrature methods based upon the mean value theorems. Mathematical Methods in the Applied Sciences, – 2020. – 44(5), – P. 3840–3856.
Bellet JB., Brachet M.,Croisille JP. QUADRATURE AND SYMMETRY ON THE CUBED SPHERE. Journal of Computational and Applied Mathematics, – 2022. – P. 1–17.
Mahesar S., Shaikh M.M., Chandio M.S. and Shaikh A.W. Some New Time and Cost Efficient Quadrature Formulas to Compute Integrals Using Derivatives with Error Analysis. Symmetry, – 2022. – 14(12), 2611.
Hayotov A.R., Jeon S., Lee Ch. On an optimal quadrature formula for approximation of Fourier integrals in the space ????(1) 2 . Journal of Computational and Applied Mathematics, Page 112713, – Volume 372. – 2020.
Huda J.S., Noori Y.A. An Efficient Three-step Iterative Methods Based on Bernstein Quadrature Formula for Solving Nonlinear Equations. Basrah Journal of Science, – vol. 39(3), – 2021. – P. 355–383.
Shivaram K.T., Prakasha H.T. Введение в теорию кубатурных формул. Numerical Evaluation of Highly Oscillatory Integrals of Arbitrary Function Using Gauss-Legendre Quadrature Rule, – 2020. – P. 211–216.
Aimi A., Calabr`o F., Falini A., Sampoli M. L., and Sestini A. Quadrature formulas based on spline quasi-interpolation for hypersingular integrals arising in IgA-SGBEM. Computer Methods in Applied Mechanics and Engineering, – 2020. – 113441.
