On Optimal Iterative and Direct Methods for Solving the Dirichlet Problem for the Poisson Equation

Authors

  • Sh.A. Ziyakulova Termez State University Author

DOI:

https://doi.org/10.71310/pcam.6_70.2025.12

Keywords:

optimal parameters, iterative and direct method, number of iterations, number of arithmetic operations, a discrete version of the pre-integration method

Abstract

For the numerical solution of the Dirichlet problem for the Poisson equation, both direct and iterative methods have been developed. However, the required number of arithmetic operations for direct methods, as well as the number of iterations in iterative methods, often turns out to be very large. For this reason, the issues of high accuracy and efficiency of various methods remain relevant. In this work, a new high-accuracy and efficient method is proposed for the numerical solution of the Dirichlet problem for the Poisson equation – a discrete version of the preliminary integration method, which significantly surpasses existing direct and iterative methods in terms of the number of arithmetic operations. The efficiency of the proposed method is illustrated by tabular and graphical results.

References

Samarskiy A.A. Teoriya raznostnykh skhem. – M.: Nauka, 1977. – 656 s.

Saad K.M., Srivastava H.M. Numerical solutions of the multi-space fractional-order coupled Korteweg–De Vries equation with several different kernels // Fractal and Fractional. – 2023. – Vol. 7. – Art. 716.

Xie R., Wu B., Liu W. Optimal error estimates for Chebyshev approximations of functions with endpoint singularities in fractional spaces // Journal of Scientific Computing. – 2023. – Vol. 96, Issue 3.

Edwards R. Fourier series in modern presentation. – Vol. 1. – М.: Мир, 1985. – 264 p.

Li C. Discrete Fourier Transform and Fast Fourier Transform // Cambridge University Press. – 2022. – P. 242-266. doi: http://dx.doi.org/10.1017/9781108697101.015.

Wang X., Hu J. An identity involving the integral of the first-kind Chebyshev polynomials // Mathematical Problems in Engineering. – 2018. – Art. 7186940. – 5 p. doi: http://dx.doi.org/10.1155/2018/7186940.

Trubnikov YU.V., Chernyavskiy M.M. O chislenno-analiticheskom metode postroyeniya ekstremal'nykh polinomov kompleksnogo argumenta // Izvestiya Natsional'noy akademii nauk Belarusi. Seriya «Fizika i matematika». – 2023. – Vol. 59, Issue 1. – C. 18-36. doi: http://dx.doi.org/10.29235/1561-2430-2023-59-1-18-36.

Raji M.T., Ishola C.Y., Babalola O.O., Ayoola T.A., Momoh N.M., Peter O.J. Numerical solution of eighth-order boundary value problems using Chebyshev polynomials // Mathematics and Computational Sciences. – 2023. – Vol. 4, Issue 1. – P. 18-28. doi: http://dx.doi.org/10.30511/mcs.2023.1988829.1108.

Balasubramanian K. Orthogonal polynomials through complex matrix graph theory // Journal of Mathematical Chemistry. – 2023. – Vol. 61. doi: http://dx.doi.org/10.1007/s10910-022-01415-x.

Maulidi I., Wibowo B.A., Apriliani V., Umam R. The characteristics of the first kind of Chebyshev polynomials and its relationship to the ordinary polynomials // JTAM (Jurnal Teori dan Aplikasi Matematika). – 2021. – Vol. 5, Issue 2. – P. 323-331. doi: http://dx.doi.org/10.31764/jtam.v5i2.4647.

Ricci P.E. Chebyshev polynomials, Rhodonea curves and pseudo-Chebyshev functions: a survey // International Journal of Computational Intelligence Systems. https://www.atlantis-press.com/journals/ijnd.

Wang T., Zhang H. Some identities involving the derivative of the first kind Chebyshev polynomials // Mathematical Problems in Engineering. – 2015. – Art. 146313. – 7 p. doi: http://dx.doi.org/10.1155/2015/146313.

AlQudah M.A. Characterization of the generalized Chebyshev-type polynomials of first kind // International Journal of Applied Mathematical Research. – 2015. – Vol. 4, Issue 4. – P. 519-524. doi: http://dx.doi.org/10.14419/ijamr.v4i4.4788.

Castillo K., De Jesus M.N., Petronilho J. A note on orthogonal polynomials described by Chebyshev polynomials // Journal of Mathematical Analysis and Applications. – 2021. – Vol. 497, Issue 2. – Art. 124906. doi: http://dx.doi.org/10.1016/j.jmaa.2020.124906.

Somasundaram K., Kalaividya P.A., Kalaiselvi T. Edge detection using Chebyshev’s orthogonal polynomial and application to brain segmentation from magnetic resonance images (MRI) of human head scans // Computational Methods, Communication Techniques and Informatics. – Gandhigram, India, 2017. – ISBN 978-81-933316-1-3. https://www.researchgate.net/publication/313726262.

Huang J.-H., Liu Y.-C. Developing a finite element method based on Chebyshev polynomials for the analysis of plate, shell and fluid problems. – 2017. https://doi.org/10.13140/RG.2.2.15837.56803.

Atallah A.M., Woollands R.M., Bani Younes A., Junkins J.L. Tuning orthogonal polynomial degree and segment interval length to achieve prescribed precision approximation of irregular functions // Proc. Space Flight Mechanics Meeting. – 2018. doi: http://dx.doi.org/10.2514/6.2018-2225. https://www.researchgate.net/publication/322310429.

Normurodov CH.B. Ob odnom effektivnom metode resheniya uravneniya Orra–Zommerfel'da // Matematicheskoye modelirovaniye. – 2005. – Vol. 17, Issue 9. – C. 35-42.

Normurodov Ch.B. Mathematical modeling of hydrodynamic problems for two-phase planeparallel flows // Mathematical Modeling. – 2007. – Vol. 19, Issue 6. – P. 53-60.

Abutaliyev F.B., Normurodov CH.B. Matematicheskoye modelirovaniye problem gidrodinamicheskoy ustoychivosti. – Tashkent: Fan va tekhnologiya, 2011. – 188 s.

Normurodov Ch.B., Tursunova B.A. Numerical modeling of the boundary value problem of an ordinary differential equation with a small parameter at the highest derivative by Chebyshev polynomials of the second kind // Results in Applied Mathematics. – 2023. – Art. 100388. doi: http://dx.doi.org/10.1016/j.rinam.2023.100388.

Normurodov C., Toyirov A., Ziyakulova S., Viswanathan K.K. Convergence of spectralgrid method for Burgers equation with initial-boundary conditions // Mathematics and Statistics. – 2024. – Vol. 12, Issue 2. – P. 115-125. doi: http://dx.doi.org/10.13189/ms.2024.120201.

Normurodov Ch.B., Abduraximov B.F., Djurayeva N.T. On estimating the rate of convergence of the initial integration method // Proc. International Scientific Conference on Modern Problems of Applied Science and Engineering (MPASE2024). – Samarkand, Uzbekistan, 2-3 May 2024. – AIP Conference Proceedings. – 2024. – Vol. 3244. – Art. 020061. – P. 1-11. doi: http://dx.doi.org/10.1063/5.0242041.

Normurodov Ch.B., Ziyakulova Sh.A., Murodov S.K. On one highly accurate and efficient method for solving the biharmonic equation // International Journal of Applied Mathematics. – 2025. – Vol. 38, Issue 4. – P. 437-453. doi: http://dx.doi.org/10.12732/ijam.v38i4.1.

Normurodov Ch.B., Ziyakulova Sh.A. Chislennoye modelirovaniye uravneniy ellipticheskogo tipa diskretnym variantom metoda predvaritel'nogo integrirovaniya // Problemy vychislitel'noy i prikladnoy matematiki. – 2024. – №5(61). – C. 59-68.

Normurodov Ch.B., Ziyakulova Sh.A. Chislennoye modelirovaniye izgiba tonkoy plastiny s primeneniyem diskretnogo varianta metoda predvaritel'nogo integrirovaniya // Problemy vychislitel'noy i prikladnoy matematiki. – 2025. – №4(68). – C. 26-37.

Normurodov CH.B., Ziyakulova SH.A. Vysokotochnyy i effektivnyy metod dlya chislennogo modelirovaniya izgiba zhelezobetonnoy plity // Problemy vychislitel'noy i prikladnoy matematiki. – 2025. – №5(69). – C. 5-16.

Downloads

Published

2026-01-11

Issue

Section

Статьи