An Optimal Quadrature Formula Exact to the Exponential Function

Authors

  • A.R. Hayotov V.I.Romanovskiy Institute of Mathematics, AS RUz Author
  • M.Sh. Shomalikova Central Asian University Author

DOI:

https://doi.org/10.71310/pcam.5_69.2025.06

Keywords:

Hilbert space, phi-function method, optimal quadrature formula, the error

Abstract

Numerical integration of definite integrals plays a crucial role in both fundamental and applied sciences. The precision of approximate integral calculations depends on the initial data and specific conditions, which impose various requirements on the resulting computations. Traditional methods for numerical analysis of definite integrals, such as the quadrature formulas developed by Gregory, Newton-Cotes, Euler, Gauss, Markov, and others, are well-established. Since the mid-20th century, the theory of creating optimal formulas for numerical integration through variational methods has evolved. It is important to mention that optimal quadrature formulas exist in the sense defined by Nikolsky and Sard. This paper focuses on the challenge of constructing an optimal quadrature formula according to Sard’s approach. In this process, the method of phi-functions is applied. The error of the formula is estimated by integrating the square of the phi function from a specific Hilbert space. Afterward, the appropriate function is chosen such that the integral of its square within this interval is minimized. Finally, the coefficients of the optimal quadrature formula are determined using the resulting phi function.

References

Hayotov A.R., Babaev S.S. Optimal interpolation formulas in the space W2(m,m−1)2 // Calcolo. – 2019. – Vol. 56, No. 23. – P. 1066-1088.

Boltaev N.D., Hayotov A.R., Khudayberdiev M. Optimal quadrature formula for approximate calculation of Fourier coefficients in space W2(1, 0)2 // Problems of Computational and Applied Mathematics. – 2015. – Vol. 1, No. 1. – P. 71-77.

Boltaev N.D., Hayotov A.R., Milovanović G.V., Shadimetov Kh.M. Optimal quadrature formulas for numerical evaluation of Fourier coefficients in W2(m,m−1) 2 // J. Appl. Anal. Comput.. – 2017. – Vol. 7, No. 4. – P. 1233-1266.

Boltaev N.D., Hayotov A.R., Shadimetov Kh.M. Construction of optimal quadrature formula for numerical calculation of Fourier coefficients in Sobolev space L2(1)2 // Amer. J. Numer. Anal.. – 2016. – No. 4. – P. 1-7.

Catinaş T., Coman Gh. Optimal quadrature formulas based on the ????-function method // Stud. Univ. Babeş-Bolyai Math.. – 2006. – Vol. 51, No. 1. – P. 49-64.

Coman Gh. Formule de cuadratura de tip Sard // Stud. Univ. Babeş-Bolyai Math.-Mech.. – 1972. – Vol. 17, No. 2. – P. 73-77.

Coman Gh. Monosplines and optimal quadrature formulae Lp // Rend. Mat.. – 1972. – Vol. 5, No. 6. – P. 567-577.

DeVore R., Foucart S., Petrova G., Wojtaszczyk P. Computing a quantity of interest from observational data // Constr. Approx.. – 2019. – Vol. 49. – P. 461-508.

Ghizzetti A., Ossicini A. Quadrature Formulae. – Berlin: Academie Verlag, 1970.

Hayotov A.R., Babaev S.S. Optimal quadrature formulas for computing of Fourier integrals in W2(m,m−1) 2 space // AIP Conference Proceedings. – 2021. – Vol. 2365. – 020021.

Hayotov A.R., Jeon S., Lee C.O. On an optimal quadrature formula for approximation of Fourier integrals in the space ????(1) 2 // J. Comput. Appl. Math.. – 2020. – Vol. 372.

Hayotov A.R., Jeon S., Shadimetov Kh.M. Application of optimal quadrature formulas for reconstruction of CT images // J. Comput. Appl. Math.. – 2021. – Vol. 388.

Hayotov A.R., Kuldoshev H.M. An optimal quadrature formula with sigma parameter // Problems of Computational and Applied Mathematics. – 2023. – Vol. 48, No. 2/1. – P. 7-19.

Hayotov A.R., Rasulov R.G. The order of convergence of an optimal quadrature formula with derivative in the space ????(1, 0) 2 // Filomat. – 2020. – Vol. 34, No. 11. – P. 3835-3844.

Kahler P. On the weights of Sard’s quadrature formulas // Calcolo. – 1988. – Vol. 25, No. 3. – P. 169-186.

Lanzara F. On optimal quadrature formulae // J. Inequal. Appl.. – 2000. – No. 5. – P. 201-225.

Meyers L.F., Sard A. Best approximate integration formulas // J. Math. and Phys.. – 1950. – Vol. 29. – P. 118-123.

Nikolsky S.M. On the issue of estimates of approximations by quadrature formulas // Advances in Math. Sciences. – 1950. – Vol. 5, No. 3. – P. 165-177.

Nikolsky S.M. Quadrature Formulas. – 4th ed. – Moscow: Nauka, 1988.

Sard A. Best approximate integration formulas, best approximate formulas // Amer. J. Math.. – 1949. – Vol. 71. – P. 80-91.

Sard A. Linear Approximation. – 2nd ed. – Providence, Rhode Island: American Math. Society, 1963.

Schoenberg I.J. On trigonometric spline interpolation // J. Math. Mech.. – 1964. – Vol. 13. – P. 795-825.

Schoenberg I.J. On monosplines of least deviation and best quadrature formulae // Indust. Appl. Math. Ser. B Numer. Anal.. – 1965. – Vol. 2. – P. 144-170.

Schoenberg I.J. On monosplines of least square deviation and best quadrature formulae II // SIAM J. of Numer. Anal.. – 1966. – Vol. 3. – P. 321-328.

Schoenberg I.J., Silliman S.D. On semicardinal quadrature formulae // Math. Comp.. – 1973. – Vol. 27. – P. 483-497.

Shadimetov Kh.M., Hayotov A.R. Optimal quadrature formulas in the sense of Sard in W2(m,m−1)2 space // Calcolo. – 2014. – Vol. 51, No. 2. – P. 211-243.

Shadimetov Kh.M., Hayotov A.R. Optimal Approximation of Error Functionals of Quadrature and Interpolation Formulas in Spaces of Differentiable Functions. – Tashkent: Muhr Press, 2022.

Shadimetov Kh.M., Hayotov A.R., Akhmedov D.M. Optimal quadrature formulas for Cauchy type singular integrals in Sobolev space // Appl. Math. Comput.. – 2015. – Vol. 263. – P. 302-314.

Sobolev S.L. Introduction to the Theory of Cubature Formulas. – Moscow: Nauka, 1974.

Sobolev S.L. Coefficients of optimal quadrature formulas // Doklady Akademii Nauk SSSR. – 1977. – Vol. 235, No. 1. – P. 34-37.

Downloads

Published

2025-11-16

Issue

Section

Статьи