Optimal Quadrature Formulas for Approximate Calculation of Fast Oscillating Integral

Authors

  • X.M. Shadimetov Tashkent State Transport University Author
  • F.A. Nuraliyev Tashkent International University Author
  • D.M. Mirkomilov Tashkent State Transport University Author

DOI:

https://doi.org/10.71310/pcam.4_68.2025.08

Keywords:

Sobolev space, optimal coefficients, error functional, extremal function

Abstract

The article investigates optimal quadrature formulas designed for the approximate evaluation of highly oscillatory integrals, which frequently arise in many applied problems of mathematical physics, signal theory, and computational mathematics. The work is based on the formulation and solution of Sard’s problem in a Sobolev space, where quadrature formulas are constructed taking into account not only the values of the integrand but also its derivatives at the nodal points. This approach makes it possible to significantly improve the accuracy of approximation. To determine the optimal coefficients of the quadrature formula, the Sobolev method is applied, which allows one to derive an analytical expression for the norm of the error functional. Based on the use of the extremal function and the Riesz representation theorem, a boundary value problem is constructed, the solution of which yields the explicit form of the optimal coefficients and an exact estimate of the error. The presented results have a solid theoretical foundation and confirm the effectiveness of the proposed method. The obtained optimal quadrature formulas provide high accuracy in computing integrals with highly oscillatory kernels, opening up prospects for their application in numerical methods for solving differential equations, modeling physical processes, and other areas of computational mathematics.

References

Iserles A., Norsett S.P. On quadrature methods for highly oscillatory integrals and their implementation BIT Numerical Mathematics, – 2004. T. 44. – №4. – P. 755–772. doi: http: //dx.doi.org/10.1023/B:BITN.0000046819.28529.f3.

Iserles A., Norsett S.P. Efficient quadrature of highly oscillatory integrals using derivatives Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., – 2005. T. 461. – №2060. – P. 1383–1399. doi: http://dx.doi.org/10.1098/rspa.2004.1420.

Novak E., Zhang S. Optimal quadrature formulas for the Sobolev space ????1 J. Sci. Comput., – 2019. T. 78. – №1. – P. 274–289. doi: http://dx.doi.org/10.1007/s10915-018-0792-1.

Shadimetov Kh.M., Gulomov O.Kh. Optimal quadrature formulas for calculating integrals of rapidly oscillating functions J. Math. Sci., – 2023. T. 277. – №4. – P. 446–457. doi: http: //dx.doi.org/10.1007/s10958-023-06765-5.

Hayotov A.R., Khayriev U.N. Construction of an optimal quadrature formula in the Hilbert space of periodic functions Lobachevskii J. Math., – 2022. T. 43. – №11. – P. 3151–3160. doi: http://dx.doi.org/10.1134/S1995080222110149.

Boltaev N.D., Hayotov A.R., Shadimetov Kh.M. Construction of optimal quadrature formulas for Fourier coefficients in Sobolev space ????(????) 2 (0, 1) Numer. Algorithms, – 2017. T. 74. – №2. – P. 307–336. doi: http://dx.doi.org/10.1007/s11075-016-0177-7.

Hayotov A.R., Jeon S., Shadimetov Kh.M. Optimal quadrature formulas for non-periodic functions in Sobolev space and its application to CT image reconstruction Filomat, – 2021. T. 35. – No 12. – P. 4177–4195. doi: http://dx.doi.org/10.2298/FIL2112177H.

Huybrechs D., Vandewalle S. On the evaluation of highly oscillatory integrals by analytic continuation SIAM J. Numer. Anal., – 2006. T. 44. – No 3. – P. 1026–1048. doi: http: //dx.doi.org/10.1137/050633027.

Wang Y., Xiang S. Levin methods for highly oscillatory integrals with singularities Sci. China Math., – 2022. T. 65. – No 3. – P. 603–622. doi: http://dx.doi.org/10.1007/s11425-020-1829-0.

He G., Liu Y. Efficient numerical quadrature for highly oscillatory integrals with Bessel function kernels Mathematics, – 2025. T. 13. – No 9. – Article 1508. doi: http://dx.doi.org/10.3390/math13091508.

Iserles A., Maierhofer G. An accelerated Levin–Clenshaw–Curtis method for the evaluation of highly oscillatory integrals BIT Numerical Mathematics, – 2025. T. 65. doi: http://dx.doi.org/10.1007/s10543-025-01079-4

Ledoux V., Van Daele M. Interpolatory quadrature rules for oscillatory integrals J. Sci. Comput., – 2012. T. 53. – №3. – P. 586–607. doi: http://dx.doi.org/10.1007/s10915-012-9624-1.

Wu M., Wang H. Gaussian quadrature rules for composite highly oscillatory integrals Preprint (arXiv), – 2021. – arXiv:2106.04567. doi: http://dx.doi.org/10.48550/arXiv.2106.04567.

Anand A., Dhiman D. Computation of highly oscillatory integrals using a Fourier extension approximation Preprint (arXiv), – 2024. – arXiv:2404.06789. doi: http://dx.doi.org/10.48550/arXiv.2404.06789.

Shadimetov Kh.M., Hayotov A.R., Nuraliev F.A. Optimal quadrature formulas with derivatives in Sobolev space Preprint (arXiv), – 2014. – arXiv:1410.8423 (submitted 30 Oct 2014) doi: http://dx.doi.org/10.48550/arXiv.1410.8423

Levin D. Fast integration of rapidly oscillatory functions J. Comput. Appl. Math., – 1996. – T. 67. – №1. – P. 95–101. doi: http://dx.doi.org/10.1016/0377-0427(95)00115-8.

Levin D. Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations Math. Comp., – 1982. – T. 38. – №157. – P. 531–538. doi: http: //dx.doi.org/10.1090/S0025-5718-1982-0645660-5.

Huybrechs D., Edwin R.A.S. Highly oscillatory quadrature In: Highly Oscillatory Problems, Cambridge Univ. Press, – 2009. – P. 25–50. doi: http://dx.doi.org/10.1017/CBO9780511611413.003.

Iserles A., Norsett S.P. Quadrature methods for multivariate highly oscillatory integrals using derivatives Math. Comp., – 2006. T. 75. – №255. – P. 1233–1258. doi: http://dx.

doi.org/10.1090/S0025-5718-06-01841-4.

Luke R. On the computation of oscillatory integrals Proc. Camb. Phil. Soc., – 1954. T. 50. – №2. – P. 269–277. doi: http://dx.doi.org/10.1017/S0305004100029492.

Downloads

Published

2025-09-20

Issue

Section

Статьи