System for Finding Optimal Coefficients of Hermite-type Quadrature Formulas with third-Order Derivatives

Authors

  • Kh.M. Shadimetov Tashkent State Transport University Author
  • F.A. Nuraliev Tashkent International University Author
  • R.M. Edilbekova V.I.Romanovskiy Institute of Mathematics, AS RUz Author

DOI:

https://doi.org/10.71310/pcam.4_68.2025.07

Keywords:

Sobolev space, derivative optimal quadrature formula, error functional, optimal coefficients

Abstract

In the world, special attention is given to developing various optimal computational methods for the approximate calculation of definite integrals. This article focuses on constructing composite optimal quadrature formulas in the space of differentiable functions using the Sobolev method. The quadrature formula consists of a linear combination of function values and its derivatives up to and including the third order at all nodes of the interval [0,1]. The accuracy of quadrature formulas is evaluated by the norm of the error functional of the quadrature formulas: The error of composite quadrature formulas is estimated through the norm of the error functional of the quadrature formula under onsideration and the norm of the function. The norm of the error functional of the quadrature formula will be determined through the extremal function of this quadrature formula. It is known that the norm of the error functional of a composite quadrature formula is expressed in terms of the coefficients of this quadrature formula. By minimizing this norm with respect to the coefficients, systems of linear equations will be obtained for finding the optimal coefficients of composite quadrature formulas.

References

Sobolev S.L. Vvedeniye v teoriyu kubaturnykh formul // M.: Nauka, – 1974. – 808 s.

Shadimetov KH.M., Nuraliyev F.A. Ob odnoy optimal'noy kvadraturnoy formule s proizvodnymi // Uzbekskiy matematicheskiy zhurnal, – 2005. – №3. – C. 90–103.

Sobolev S.L., Vaskevich V.L. Kubaturnyye formuly // Novosibirsk: Izd-vo IMSO RAN, – 1996. – 484 s.

Sarafyan D., Derr L., Outlaw C. Generalizations of the Euler-Maclaurin Formula // Journal of mathematical analysis and applications – 1979. – Vol. 67. – P. 542–548.

Sobolev S.L. The coefficients of optimal quadrature formulas, in: Selected works of S.L. Sobolev // Springer US, – 2006. – P. 561—566.

Sobolev S.L. Koeffitsiyenty optimal'nykh kvadraturnykh formul // Dokl. AN SSSR, Moskva, – 1977. – T. 235. – №1. – S. 34-–37.

Shadimetov Kh.M., Hayotov A.R., Nuraliev F.A. Optimal interpolation formulas with derivative in the space ????????2 (0, 1) // Filomat, – 2019. – Vol. 33(17). – P. 5661-–5675.

Shadimetov Kh.M., Nuraliev F.A., Kuziev Sh.S. Optimal quadrature formula of Hermite type in the space of differentiable functions // International Journal of Analysis and Applications, – 2024. – №22(25). – P. 1-–13.

Nuraliev F.A., Kuziev Sh.S. The coefficients of an optimal quadrature formula in the space of differentiable functions // Uzbek Mathematical Journal, – 2023. – №67(2). – P. 124-–134.

Lanzara F. An optimal quadrature formula // Journal of Inequalities and Applications, –2000. – Vol. 5. – P. 201–225.

Nuraliev F.A. Optimal formulas for numerical integration with derivatives in Sobolev space // Doklady AN RUz, – 2016. – №1. – С. 3–6.

Hayotov A.R., Shadimetov Kh.M., Nuraliev F.A. Optimal quadarture formulas with derivative in the space ????(????) 2 (0, 1) // American Journal of Numerical Analysis, – 2014. –Vol. 2. – №4. – P. 115–128.

Shadimetov Kh.M., Nuraliev F.A. Optimization of quadrature formulas with derivatives // Problem of Computational and Applied Mathematics, Tashkent, – 2015. – №1. – P. 61–70.

Hayotov A.R., Babaev S.S. The numerical solution of a Fredholm integral equations of the second kind by the weighted optimal quadrature formula // Results in Applied Mathematics – 2024. – Vol. 24. 100508, doi: http://dx.doi.org/https://doi.org/10.1016/j.rinam.2024.100508.

Hayotov A.R., Babaev S.S. An optimal quadrature formula for numerical integration of the right Riemann–Liouville fractional integral // Lobachevskii J. Math. – 2023. – Vol. 44. – №10. – P. 4282–4293. doi: http://dx.doi.org/10.1134/S1995080223100165.

Downloads

Published

2025-09-20

Issue

Section

Статьи