MATHEMATICAL MODELING OF THE DEFORMED STATE PROCESSES OF MESH PLATES WITH A COMPLEX SHAPE
Keywords:
stress-strain state, mesh plates, R-function method (RFM), Bubnov Galerkin methodAbstract
This article discusses the mathematical modeling of the processes of the deformed state of mesh plates with a complex configuration of the area in the plan. In particular, a mathematical model of the deformed state processes of mesh plates, a computational algo rithm for calculating mesh plates with a complex shape using a combination of R-function by V.L.Rvachev (RFM) and Bubnov-Galerkin methods, solution structures constructed using the RFM constructive method and the results of a computational experiment are presented.
References
Pshenichnov G.I. Teoriya tonkikh uprugikh setchatykh obolochek i plastin.– M.: Nauka, 1982.– 352 s.
Pshenichnov G.I. Raschet setchatykh obolochek // Issledovaniya po teorii sooruzheniy. 1976.– Vyp. 22.
Pshenichnov G.I. Teoriya tonkikh uprugikh setchatykh obolochek: dis. dokt. tekhn. nauk. M., 1968.
Rvachev V.L. Teorii R-Funktsii i ikh nekotoryye predlozheniya.– Kiyev: Naukova dumka, 1982.– 552 s.
Rvachev V.L., Kurpa L. Metod R– funktsiy v zadachakh izgiba plastin so slozhnoy formoy.– Kiyev: Naukova dumka, 1988.
Nuraliev F. et al. Calculation Results of the Task of Geometric Nonlinear Deformation of Electro-magneto-elastic Thin Plates in a Complex Configuration // International Conference on Information Science and Communications Technologies (ICISCT 2022). 2022.
Nuraliev F., Safarov S., Artikbayev M. Solving the problem of geometrical nonlinear deformation of electro-magnetic thin plate with complex configuration and analysis of results // International Conference on Information Science and Communications Technologies: Applications, Trends and Opportunities (ICISCT 2021).– 2021.
Nuraliyev F.M. i dr. Matematicheskoye modelirovaniye geometricheskikh nelineynykh pro tsessov elektromagnitnykh uprugikh tonkikh plastin slozhnoy konfiguratsii // Proble my vychislitel'noy i prikladnoy matematiki.– 2022.– № 1.– S. 90-109.
Nuraliev F.M. Algorithmization in Magneto-elasticity of Thin Plates and Shells of the Complex Configurations // Computer Science and Information Technology.– 2015.– Vol. 3.– P. 66-69.
Sultonov B. Obosnovaniye dostovernosti chislennykh rezul'tatov priblizhennogo resheniya raschetu setchatykh plastin // Sovmestnyy vypusk Uzbekskogo zhurnala «Problemy informatiki i energetiki» i sbornika nauchnykh trudov «Voprosy vychislitel'noy i prikladnoy matematiki» : po materialam Respublikanskoy nauchno-tekhnicheskoy konferentsii «Sovremennoye sostoyaniye i puti razvitiya informatsionnykh tekhnologiy». Tashkent, 2008.– S. 226-229.
