ABMVAFracSim software package for studying the fractional van der Pol-Airy oscillator
DOI:
https://doi.org/10.71310/pcam.2_64.2025.02Keywords:
fractional van der Pol-Airy oscillator, oscillograms, Phyton, phase trajecto ries, Adams-Bashforth-Multon methodAbstract
In the article, using the ABMVAFracSim software package developed in the Python programming language, the fractional oscillatory system of Van der Pol-Airy is investigated. The fractional Van der Pol-Airy oscillator is a nonlinear differential equation with fractional derivatives, which are understood in the Gerasimov-Caputo sense. In the software package, the Adams-Bashforth-Multon numerical algorithm from the predictor corrector family was implemented for studying the fractional Van der Pol-Airy oscillator. Also, the ability to visualize the simulation results is implemented- to build oscillograms and phase trajectories, as well as save them for subsequent analysis. The simulation results can also be saved in text files. In the work, a study of the dynamic modes of the fractional Van der Pol-Airy oscillator is carried out, oscillograms and phase trajectories are built for different values of the control parameters. The operation of the ABM VAFracSim software package is described.
References
Hilfer R. Foundations of fractional dynamics // Fractals,– 1995. vol. 3(03).– P. 549–556.
Cattani C., Srivastava H.M., Yang X.J. Fractional dynamics. Walter de Gruyter GmbH & Co KG,– 2015.
Tarasov V.E. General Fractional Dynamics // Mathematics,– 2021. vol. 9(13), 1464. doi: http://dx.doi.org/10.3390/math9131464
Нахушев А.М. Дробное исчисление и его применение. М.: Физматлит,– 2003.– 272 с.
Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier,– 2006.– 523 p.
Van der Pol B. On relaxation-oscillations // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,– 1926.– vol. 2.– no 11.– P. 978–992.
Airy G. On the intensity of light in the neighbourhood of a caustic // Trans. Camb. Phil. Soc., 1838. no 50.– P. 379–402.
Rabotnov Yu.N. Elements of hereditary mechanics of solids. Moscow: MIR Publishers. 1980.– 387 p.
Салимова А.И., Паровик Р.И. Математическая модель дробного осциллятора Ван дер Поля-Эйри // Вестник КРАУНЦ. Физ.-мат. науки,– 2024.– Т. 47. №2.– C. 19–32.
Salimova A.I., Parovik R.I. Dynamic modes of the Van der Pol-Airy fractional oscillator // AIP conference proceedings,– 2024.– vol. 3244.– no. 1. 020006. doi: http://dx.doi.org/10.1063/5.0241421.
Van Horn B.M. II, Nguyen Q. Hands-On Application Development with PyCharm: Build Applications like a Pro with the Ultimate Python Development Tool. Birmingham, UK: Packt Publishing Ltd.,– 2023.– 652 p.
Novozhenova O.G. Life And Science of Alexey Gerasimov, One of the Pioneers of Fractional Calculus in Soviet Union // FCAA,– 2017.– vol. 20.– P. 790–809. doi: http://dx.doi.org/10.1515/fca-2017-0040.
Caputo M., Fabrizio M. On the notion of fractional derivative and applications to the hysteresis phenomena // Meccanica,– 2017.– vol. 52.– P. 3043–3052. doi: http://dx.doi.org/10.1007/s11012-017-0652-y.
Паровик Р.И. Задача Коши для обобщенного уравнения Эйри // Доклады Адыгской (Черкесской) Международной академии наук.– 2014.– Т. 16.– № 3.– С. 64–69.
Паровик Р.И. Математическое моделирование эредитарного осциллятора Эйри с трением // Вестник Южно-Уральского государственного университета. Серия: Математическое моделирование и программирование. – 2017.– Т. 10.– № 1.– С. 138–148. doi: http://dx.doi.org/10.14529/mmp170109
Nagumo J., Arimoto S., Yoshizawa S. An active pulse transmission line simulating nerve axon // Proc. IRE.– 1962.– no. 50,– P. 2061–2070.
Cartwright J., Eguiluz V., Hernandez-Garcia E., Piro O. Dynamics of elastic excitable media // Internat. J. Bifur. Chaos Appl. Sci. Engrg.– 1999.– no. 9.– P. 2197–2202.
Efremidis N.K. et al. Airy beams and accelerating waves: an overview of recent advances // Optica.– 2019.– vol. 6.– no. 5.– P. 686–701. doi: http://dx.doi.org/10.1364/OPTICA.6.000686.
Parovik R.I. Mathematical model of the Van der Pol fractal oscillator // Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy akademii nauk.– 2015.– vol. 17,– no. 2.– P. 57–62.
Li´ enard A. Etude des oscillations entretenues // Revue g´ en´ erale de l’´electricit´ e,– 1928. no. 23.– P. 901–912.
Yang C., Liu F. A computationally effective predictor-corrector method for simulating fractional order dynamical control system // ANZIAM Journal, – 2005.– vol. 47.– P. 168–184. doi: http://dx.doi.org/10.21914/anziamj.v47i0.1037.
Сергиенко Д.Ф., Паровик Р.И. Об одной системе связанных линейных осцилляторов с дробным трением и непостоянными коэффициентами для описания геоакустической эмиссии // Вестник КРАУНЦ. Физико-математические науки.– 2024.– Т. 49.– № 4. С. 36-49. doi: http://dx.doi.org/10.26117/2079-6641-2024-49-4-36-49
Parovik R. Selkov’s Dynamic System of Fractional Variable Order with Non-Constant Coefficients // Mathematics.– 2025.– Vol. 13,– No. 3. doi: http://dx.doi.org/10.3390/math13030372.
