Новые связанные краевые задачи термоупругости в деформациях
Ключевые слова:
условие совместности Сен-Венана, метод конечных разностей, явные и неявные схемы, метод переменного направленияАннотация
Настоящая работа посвящена формулировке и численному решению связанных краевых задач термоупругости относительно деформаций. Предложены две эквивалентные связанные краевые задачи термоупругости относительно деформаций и температуры. Первая состоит из шести дифференциальных уравнений термоупругости найденных в рамках условий совместности деформаций Сен-Венана и уравнения притока тепла с соответствующими начальными и краевыми условиями. Во втором случае, первые три из шести дифференциальных уравнений термоупругости заменена с тремя продифференцированными уравнения движения. Справедливость сформулированных двух краевых задач термоупругости обоснованы сравнением их численных, полученных по методу прогонки и рекуррентных соотношений, а также решением аналогичной связанной задачи относительно перемещений.
Библиографические ссылки
Andrianov I., Topol H. 2022. Compatibility conditions: number of independent equations and boundary conditions. Mechanics and Physics of Structured Media, – P. 123–140. https://doi.org/10.1016/b978-0-32-390543-5.00011-6.
B.E. Pobedrya S.V. Sheshenin and T. Kholmatov. 1988. Stress Problem. Tashkent, Fan, – 200 p.
Pobedrya B.E. 1980. New formulation of the problem of mechanics of a deformable solid body in stresses. Report of the Academy of Sciences of the USSR, vol. 253, 2, – P. 295–297.
Pobedrya B.E. 1996. Numerical methods in the theory of elasticity and plasticity. M.: Publishing House of Moscow State University, – 343 p.
Georgievski D.V., Pobedrya B.E. 2005. On the number of independent compatibility equations in the mechanics of a deformable solid. Prikl. Mat. Mekh. 68 no. 6, 1043–1048; translation in J. Appl. – P. 941–946.
Samarski A.A., Nikolaev E.S. 1978. Methods for solving grid equations. Moscow: «Science», – 592 p.
Borodachev N. M. 1995. Three-dimensional problem of the theory of elasticity in strains. Strength of Materials, 27 (5-6), – P. 296–299. https://doi.org/10.1007/bf02208501
Borodachev N.M. 2006. Stress Solutions to the Three-Dimensional Problem of Elasticity. International Applied Mechanics, 42 – P. 849–878. https://doi.org/10.1007/s10778-006-0154-4.
Li S., Gupta A., Markenscoff X. 2005. Conservation laws of linear elasticity in stress formulations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461 – P. 99–116. https://doi.org/10.1098/rspa.2004.1347
Ike C. 2018. On Maxwell’s stress functions for solving three-dimensional elasticity problems in the theory of elasticity. Journal of Computational Applied Mechanics, 49 (2), – P. 342–350. doi: https://doi.org/10.22059/JCAMECH.2018.266787.330
Khaldjigitov A.A., Djumayozov U.Z., Sagdullayeva D.A. Numerical Solution of Coupled Thermo-Elastic-Plastic Dynamic Problems. Mathematical Modelling of Engineering Problems, Vol.8, No.4, – P. 510–518. https://doi.org/10.18280/mmep.080403.
Khaldjigitov A.A., Djumayozov U.Z. 2022. Numerical Solution of the Two-Dimensional Elasticity Problem in Strains. Mathematics and Statistics. №5, Vol 10, – P. 1081–1088. https://doi.org/10.13189/ms.2022.100518
Khaldjigitov A., Djumayozov U., Tilovov O. 2023. A new approach to numerical simulation of boundary value problems of the theory of elasticity in stresses and strains. EUREKA: Physics and Engineering, – P. 160–173. http://doi.org/10.21303/2461-4262.2023.002735
Kartashev E. 2020. Model representations of heat shock in terms of thermal elasticity. Russian technological journal. 8(2), – P. 85–108.
Novatsky V. 2023. The Theory of Elasticity. Moscow: Mir, – 872 p.
Novatsky V. 1970 Dynamic problems of thermoelasticity. – M.: Mir, – 256 p.
M. Filonenko-Borodich 2003. Theory of Elasticity. University Press of the Pacific (November 6, – 396 p.
Akhmedov A.B., Kholmatov T. 1982. Solution of some problems on the equilibrium of a parallelepiped in stresses. Dokl. AN UzSSR, 6, – P. 7–9.
Khaldjigitov A.A., Djumayozov U.Z. 2022. Numerical solution of the problem of the theory of elasticity in deformations. Uzbek Journal of Problems of Mechanics, No. 3, – P. 56–65.
Kalandarov A.A. 2019. Numerical modeling of thermoelastic problems for isotropic and anisotropic bodies. Dissertation work, Tashkent, Uzbekistan.
Yusupov Yu.S. 2021. Mathematical and numerical models of related thermoplasticity problems. Dissertation work, Tashkent, Uzbekistan.
Konovalov A. N. 1979. Solution of the Theory of Elasticity Problems in Terms of Stresses. Novosibirsk State University,
F. Muradov and N. Tashtemirova 2021. Numerical Algorithm for Calculation the Density of Harmful Substances in the Atmosphere. 2021 International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan, – P. 01–03. doi: 10.1109/ICISCT52966.2021.9670278.
Rozhkova E.V. 2009. On Solutions of the problem in Stresses with the Use of Maxwell Stress Functions. Mechanics of Solids, Vol 44 (1), – P. 526–536. https://doi.org/10.3103/S0025654409040049
Muravleva L.V. 1987. Application of variational methods in solving a spatial problem of the theory of elasticity in stresses. Author’s abstract. Ph.D. M. Moscow State University,
V.V. Meleshko 2005. Superposition method in thermal-stress problems for rectangular plates. International Applied Mechanics, Vol. 41, No. 9, DOI:10.1007/s10778-006-0012-4
Abirov R.A., Khusanov B.E., Sagdullaeva D.A. 2020. Numerical modeling of the problem of indentation of elastic and elastic-plastic massive bodies. IOP Conference Series: Materials Science and Engineering, 971 032017, – P. 1–9.
Wojnar R. 1973. On the uniqueness of solutions of stress equations of motion of the Beltrami-Michell type. Bull. Acad. Polon. Sci. Ser. Sci. Tech. 21 – P. 99–103.
Ike C.C., Nwoji C.U., Mama B.O., Onah H.N., Onyia M.E. 2020. Least Squares Weighted Residual Method for Finding the Elastic Stress Fields in Rectangular Plates Under Uniaxial Parabolically Distributed Edge Loads. JCAMECH Vol. 51, No. 1, June, – P. 107–121. DOI: 10.22059/jcamech. 2020.298074.484
Lurie S.A., Belov P.A. 2022. Compatibility equations and stress functions in elasticity theory. Mechanics of Solids, 57 (4), – P. 779–791. doi: 10.3103/s0025654422040136

Загрузки
Опубликован
Выпуск
Раздел
Лицензия

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.