FitzHugh-Nagumo oscillator with variable heredity and external forcing
DOI:
https://doi.org/10.71310/pcam.1_63.2025.01Keywords:
fractional FitzHugh-Nagumo oscillator, oscillograms, phase trajectories, nonlocal explicit finite-difference scheme, limit cycle, stability, bifuptation diagramAbstract
The paper studies oscillograms, phase trajectories and bifurcation diagrams of the nonlinear FitzHugh-Nagumo oscillator with variable heredity (fractional FitzHugh-Nagumo oscillator). The model equation for the fractional FitzHugh-Nagumo oscillator contains derivatives of fractional variables of the Gerasimov-Caputo type, as well as a function of external influence, which depend on time. Local initial conditions are valid for the model equation of the fractional oscillator. Due to the nonlinearity of the fractional FitzHugh-Nagumo oscillator, a numerical algorithm based on a nonlocal finite-difference scheme of the first order of accuracy was used. Then, using the Runge rule and computer experiments, an estimate of the computational accuracy is given. The numerical algorithm was implemented in the Maple 2021 environment for constructing oscillograms and phase trajectories and in Python for constructing bifurcation diagrams. It is shown that with an increase in the nodes of the computational grid, the computational accuracy tends to theoretical estimates. Further in the article the dynamic modes of the fractional FitzHugh-Nagumo oscillator are studied using bifurcation diagrams. It is shown that regular modes can be characterized not only by relaxation oscillations, but also by damped ones. The mode type depends on the values of the external action parameters, as well as on the values of the initial conditions. It is also shown that limit cycles may not always be stable. Bifurcation diagrams were constructed, which confirmed the dynamics obtained using oscillograms and phase trajectories. The question of rigorous justification of the existence of a unique stable limit cycle remains open. For a more rigorous definition of the conditions for the existence and uniqueness of a limit cycle, as well as its stability, analogs of the theorems of Liénard and Bendixson are needed. However, the results obtained in the article allow the fractional FitzHugh-Nagumo oscillator to be used to describe self-oscillatory processes. Further development of research can be associated with the construction of maps of dynamic modes, which is a rather labor-intensive task in computational terms. Such problems can be solved on a computing server using parallel programming methods.
References
FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane // Biophysical Journal, – 1961. – no1. – P. 446–446.
Nagumo J., Arimoto S., Yoshizawa S. An active pulse transmission line simulating nerve axon // Proc. Ire., – 1962. – no 50. – P. 2061–2070.
Hodgkin A.L., Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve // J Physiol., — 1952. – no 117(4). – P. 500–544. doi: http://dx.doi.org/10.1113/jphysiol.1952.sp004764.
Казарников А.В., Ревина С.В. Монотонная неустойчивость в системе ФитцХью-Нагумо с диффузией // Известия высших учебных заведений. Северо-Кавказский регион. Естественные науки, – 2018. – № 4(200). – C. 18–24.
Нахушев А.М. Дробное исчисление и его применение. — М.: Физматлит, 2003. 272 с.
Lipko O.D. Mathematical model of propagation of nerve impulses with regard hereditarity // Vestnik KRAUNC. Fiziko-Matematiсeskie Nauki, – 2017. – no. 1(17). – P. 33–43. doi: http: //dx.doi.org/10.18454/2079-6641-2017-17-1-33-43.
Lipko O.D., Parovik R.I. Some aspects of investigation of limit cycles of Fitzhugh-Nagumo oscillator with degree memory // Journal of Physics: Conference Series, – 2018. – vol. 1141. 012125. doi: http://dx.doi.org/10.1088/1742-6596/1141/1/012125.
Lipko O.D., Parovik R.I. The study of chaotic and regular regimes of the fractal oscillators FitzHugh-Nagumo // E3S Web of Conferences, – 2018. – vol. 62. 02017. doi: http://dx.doi.org/10.1051/e3sconf/20186202017.
Novozhenova O.G. Life And Science of Alexey Gerasimov, One of the Pioneers of Fractional Calculus in Soviet Union // FCAA, – 2017. – vol. 20. – P. 790–809. doi: http://dx.doi.org/10.1515/fca-2017-0040.
Caputo M., Fabrizio M. On the notion of fractional derivative and applications to the hysteresis phenomena // Meccanica, – 2017. – vol. 52. – P. 3043–3052. doi: http://dx.doi.org/10.1007/s11012-017-0652-y.
Алимова Н.Б. Математическое моделирование автоколебаний нейрона в клеточной мембране с использованием дробной модели ФитцХью-Нагумо с функцией интенсивности раздражителя // Вестник КРАУНЦ. Физико-математические науки, – 2017. – Т. 48. № 3 – P. 59–69. doi: http://dx.doi.org/10.26117/2079-6641-2024-48-3-56-69.
Sun H., Chang A., Zhang, Y. et al. A Review on Variable-Order Fractional Differential Equations: Mathematical Foundations, Physical Models, Numerical Methods and Applications // FCAA, – 2019. – no. 22. P. 27–59. doi: http://dx.doi.org/10.1515/fca-2019-0003.
Patnaik S., Hollkamp J. P., Semperlotti F. Applications of variable-order fractional operators: A review // Proc. R. Soc. A R. Soc. Publ.– – 2020. – no. 476. – P. 20190498. doi: http://dx.doi.org/10.1098/rspa.2019.0498.
Li´enard A. Etude des oscillations entretenues // Revue g´en´erale de l’´electricit´e, – 1928. – no. 23. – P. 901–912.
Perko L. Differential Equations and Dynamical System. Vol. 7. — Heidelberg: Springer Science & Business Media, – 2013. – 557 p.
Паровик Р.И. Существование и единственность задачи Коши для фрактального нелинейного уравнения осциллятора // Узбекский математический журнал. – 2017. – № 4. – C. 110–118.
Parovik R.I. Explicit Finite-Difference Scheme for the Numerical Solution of the Model Equation of Nonlinear Hereditary Oscillator with Variable-Order Fractional Derivatives // Archives of Control Sciences, – 2016. – vol. 26. – no. 3. – P. 429–435. doi: http://dx.doi.org/10.1515/acsc-2016-002.
Liengme B.V. Maple: A Primer. — London, UK: IOP Concise Physics, – 2019. – 171 p. doi: http://dx.doi.org/10.1088/2053-2571/ab0bb3
Imokrane J.F. Bien d´ebuter en MAPLE. — Toulouse, French: CEPADUES, – 2023. – 200 p.
Van Horn B.M. II, Nguyen Q. Hands-On Application Development with PyCharm: Build pplications like a Pro with the Ultimate Python Development Tool. — Birmingham, UK: Packt Publishing Ltd., – 2023. – 652 p.
Паровик, Р.И. Исследование бифуркационных диаграмм дробной динамической системы Селькова для описания автоколебательных режимов микросейсм / Р. И. Паровик // Вестник КРАУНЦ. Физико-математические науки, – 2024. – Т. 49. – №4. – С. 24–35. doi: http://dx.doi.org/10.26117/2079-6641-2024-49-4-24-35.
Bendixson I. Sur les courbes d´efinies par des ´equations diff´erentielles // Acta Math, – 1901. – vol. 24(1), – P. 1–88.
Parovik R.I. Studies of the Fractional Selkov Dynamical System for Describing the Self-Oscillatory Regime of Microseisms // Mathematics, – 2022. – vol. 10. – no. 22. 4208. doi: http://dx.doi.org/10.3390/math10224208.
Ведяков И.И., Востров В.К. Аварийные расчетные ситуации и аварийные сейсмические нагрузки // Сейсмостойкое строительство. Безопасность сооружений, – 2016. – №5. – С. 33–38.
Il’in V.P., Skopin I.N. About performance and intellectuality of supercomputer modeling // Programming and Computer Software, – 2016. – vol. 4. – no. 1. – P. 5–16. doi: http: //dx.doi.org/10.1134/S0361768816010047.
