APPROXIMATE SOLUTION OF LINEAR FREDHOLM INTEGRAL EQUATIONS OF THE SECOND KIND BY THE METHOD OPTIMAL QUADRATURES
Keywords:
linear integral equation, optimal quadrature formula, coefficients of optimal quadrature formula, absolute errorAbstract
The paper considers the application of the optimal quadrature formula in the space to numerical solution of linear Fredholm integral equations of the second kind. The results of specific examples are analyzed. The exact solution is used to compare the results. It is proved that as m increases, the optimal quadrature formulas in the space give high accuracy for solving the integral equation.
References
Molabahrami A., Niasadegh S. Multistage Integral Mean Value Method for the Fredholm Integral Equations of the Second Kind // Thai Journal of Mathematics.– 2020.– Vol. 18, No. 2.– P. 751-763.
Hazrati A., Khoshhal M. Equations Using a Combination of Chebyshev Collocation and Lagrange Interpolation // Advances in Environmental Biology.– 2012.– No. 6(3).– P. 1032-1034.
Arrai M. et al. Legendre–Kantorovich method for Fredholm integral equations of the second kind // Mathematical modeling and computing.– 2022.– Vol. 9, No. 3.– P. 471-482.
Avazzadeh Z., Heydari M., Loghmani G.B. Numerical solution of Fredholm integral equations of the second kind by using integral mean value theorem // Applied Mathematical Modelling.– 2011.– Vol. 35.– P. 2374-2383.
Abdilrazak B.T. Approximate solutions for solving two types linear integral equations by using Bou-Baker polynomials method // Journal of Engineering and Sustainable Develop ment.– 2017.– Vol. 21, No. 6.
Buruva I.G. et al. On the Solution of the Fredholm Equation of the Second Kind // Wseas transactions on mathematics.– 2018.– Vol. 17.– P. 319-328.
Chegolin A.P. On the application of the collocation method in spaces of p– summable functions to the Fredholm integral equation of the second kind // Bulletin of higher educational institutions.– 2020.– No. 4.– P. 55-60.
Shoukralla E.S. Interpolation method for solving weakly singular integral equations of the second kind // Applied and computational mathematics.– 2021.– Vol. 10, No. 3.– P. 76-85.
Hatamzadeh-Varmazyar S., Masouri Z. Numerical solution of second kind Volterra and Fredholm integral equations based on a direct method via triangular functions // Int. J. Industrial mathematics.– 2019.– Vol. 11, No. 2.– P. 79-87.
Katani R. Numerical solution of the Fredholm integral equations with a quadrature method // Sociedad espanola de matematica aplicada.– 2018.– Vol. 76.– P. 271-276.
Krishnaveni K., Kannan K., Raja Balachandar S. A new polynomial method for solving Fredholm–Volterra integral equations // International journal of Engineering and Technol ogy.– 2013.– Vol. 5, No. 2.– P. 1474-1483.
Maleknejad K., Kajani M.T., Mahmoudi Y. Numerical solution of linear Fredholm and Volterra integral equation of the second kind by using Legendre wavelets // Journal of sciences, islamic republic of Iran.– 2002.– No. 13(2).– P. 161-166.
Hasan P.M.A., Suleiman N.A. Numerical Solution of Mixed Volterra-Fredholm Integral Equations Using Linear Programming Problem // Applied Mathematics.– 2018.– No. 8(3).– P. 42-45.
Alba P.D., Fermo L., Rodriguez G. Solution of second kind Fredholm integral equations by means of Gauss and antiGauss quadrature rules // Numerische Mathematik.– 2020.– Vol. 146.– P. 699-728.
Peng G. Numerical simulation for Fredholm integral equation of the second kind // Journal of applied mathematics and physics.– 2020.– Vol. 8.– P. 2438-2446.
Ramane H.S. Numerical solution of Fredholm integral equations using Hosoya polynomial of path graphs // American journal of numerical analysis.– 2017.– Vol. 5, No. 1.– P. 11-15.
Shesha S.R., Savitha S., Nargun A.L. Numerical solution of Fredholm Integral Equations of Second Kind using Haar Wavelets // Communic ations in applied scienc.– 2016.– Vol. 4, No. 2.– P. 49-66.
Wang X.T., Li Y.M. Numerical solution of Fredholm integral equation of second kind by general Legendre wavelets // International journal of innovative computing.– 2012.– Vol. 8, No. 1(B).– P. 1349-4198.
Shadimetov Kh.M. A method of construction of weight optimal quadrature formulas with derivatives in the Sobolev space // Uzbek mathematical Journal.– 2018.– No. 3.– P. 140-146.
Manzhirov A.V., Polyanin A.D. Handbook on integral equations: Exact solutions.– M.: Factorial Press, 1998.– 432 p.
Gulsu M., Ozturk Y. Chebyshev polynomial approximation for solving the second kind linear fredholm integral equation // Ersiyes UniversityJurnal of the Institute of Sciense and Technology.– 2010.– Vol. 26, Issue 3.– P. 203-216.
Mundewadi R.A., Mundewadi B.A. Legendre Wavelet Collocation Method for the Numerical Solution of Integral and Integro-Differential Equations // International Journal of Advanced in Management, Technology and Engineering Sciences.– 2018.– Vol. 8, Issue 1.– P. 151 170.
Al-Juburee A.K. Approximate Solution for linear Fredhom Integro-Differential Equation and Integral Equation by Using Bernstein Polynomials method // Journal of the college of basic education.– 2010.– Vol. 16, Issue 66.
Abdullah J.T., Al-Taie A.H.Sh. A comparison of Numerical Solutions for Linear Fredholm Integral Equation of the Second Kind // Journal of Physics: Conf. Series.– 2019.– Vol. 1279.– doi: http://dx.doi.org/10.1088/1742-6596/1279/1/012067.
