Modeling of the nonlinear groundwater filtration process in a porous medium

Authors

  • M.M. Karimov Digital Technologies and Artificial Intelligence Development Research Institute Author
  • D.A. Karshiev Tashkent Pediatric Medical Institute Author

Keywords:

mathematical model, finite difference method, dimensionless variables, groundwater, Boussinesq equation, filtration

Abstract

The article addresses the problem of numerical modeling of groundwater filtration processes, taking into account the influence of wells on the groundwater level. The considered nonlinear problem is transformed into a dimensionless form, and quasilinear transformations were used to obtain the numerical solution. The finite difference method was employed to obtain the numerical solution. An algorithm and software were developed to solve the problem numerically, and the results of numerical calculations based on the developed software are presented. The obtained results allow evaluating the impact of water intake wells on the groundwater level for various soil types. The research results have practical significance for optimizing the rational use of water resources, demonstrating that the location and discharge rate of water intake wells have a significant effect on groundwater levels.

References

Ravshanov N., Zagrebina S.A., Daliev Sh.K. Numerical simulation of unsteady underground water filtration in a porous medium. Uzbek journal “Problems of computational and Applied Mathematics” Tashkent, – 2019. – No 4. – P. 12–30.

Mustafa J.S., Mawlood D.K. Mathematical modelling for groundwater management for multilayers aquifers (Erbil basin). Ain Shams Engineering Journal, – Volume 15. – Issue 7. – 2024. – P. 14–29.

Ravshanov N. Abdullaev Z. Khafizov O. Modeling the Filtration of Groundwater in Multilayer Porous Media // Construction of Unique Buildings and Structures, – 2020. – Volume 92. – P. 24–039.

Абуталиев Ф.Б., Абуталиев Э.Б. Методы решения задач подземной гидромеханики на ЭВМ. // Издателство «Фан» Ташкент, – 1968. – C. 9–11.

Самарский А.А., Михайлов А.П. Математическое моделирование: Идеи. Методы. Примеры. М. Физматлит, – 2001. – C. 64–66.

Magdalena I., Haloho D.N., Adityawan M.B. Numerical approaches for Boussinesq type equations with its application in Kampar River, Indonesia. Journal of Mathematics and Computers in Simulation, – Volume 221. – 2023. – P. 76–92.

Mohamed H. Accurate approximate semi-analytical solutions to the Boussinesq groundwater flow equation for recharging and discharging of horizontal unconfined aquifers. // Journal of Hydrology, – Volume 570. – 2019. – P. 411–422.

Mohamed H. A simple and accurate closed-form analytical solution to the Boussinesq equation for horizontal flow. Advances in Water Resources, – Volume 185. – 2024.

Qinghui J., Yuehao T. A general approximate method for the groundwater response problem caused by water level variation. Journal of Hydrology – Volume 529. – Part 1. – 2015. – P. 398–409.

Basha H.A. Perturbation solutions of the Boussinesq equation for horizontal flow in finite and semi-infinite aquifers. Advances in Water Resources – Volume 155. – 2021.

Ravshanov N., Daliev Sh. Non-linear mathematical model to predict the changes in underground water level and salt concentration.// – 2020. J. Phys.: Conf. Ser. 1441 012163. doi:10.1088/1742-6596/1441/1/012163

Самарский А.А., Вабищевич П.Н. Численные методы решения задач конвекции диффузии/ М.: К.Д.Либроком, – 2015. – 248 c.

Равшанов Н., Далиев Ш. Математическая модель для мониторинга и прогнозирования изменений уровня грунтовых вод и концентрации солей в них. // Информатика: проблемы, методы, технологии Материалы XX Международной научно-методической конференции Воронеж, – 2020. – С. 216–232.

Равшанов Н., Далиев Ш. Математическая модель для прогнозирования уровня подземных вод в двухслойных средах // Информационные технологии моделирования и управления. Воронеж: Научная книга, – 2019. – № 2(116). – С. 116–124.

Anderson E.I. An analytical solution representing groundwater–surface water interaction // Water Resource. Res.: – 2003. – Vol. 39. – Issue 3. – P. 1071–1075.

Daliev Sh., Abdullaeva B., Kubyasev K. Numerical study of filtration process of ground and pressure waters in multilayer porous media. // 2020 J. Materials Science and Engineering 896 – 2020. 012069 IOP Publishing doi:10.1088/1757-899X/896/1/012069.

Walton W.C. Aquifer Test Modeling. // – 2007. – 31 p.

Климентов П.П. Богданов Г.Я. Общая гидрогеология. – 1977. – 128 c.

Лебедев А.В. Методы изучения баланса грунтовых вод. – 1976. – 36 c.

Downloads

Published

2025-01-07

Issue

Section

Статьи