Mathematical modeling of pollutant transport and diffusion in the near-surface atmospheric layer with consideration of terrain characteristics

Authors

  • N. Ravshanov Tashkent Pediatric Medical Institute Author
  • P. Nasrullaev Digital Technologies and Artificial Intelligence Development Research Institute Author

Keywords:

mathematical model, finite-difference method, pollutant transport and diffusion, terrain characteristics, atmospheric dynamic viscosity

Abstract

This paper presents a mathematical model and a numerical algorithm designed for monitoring and forecasting the ecological conditions of the near-surface atmospheric layer. The model accounts for weather and climate factors, incorporating the velocities of air mass movement and particle deposition in the atmospheric boundary layer, as well as their influence on pollutant concentrations due to decomposition and photochemical transformations. Additionally, it includes the reduction of pollutant concentrations through rainout and washout processes, which depend on precipitation intensity. Other perturbation factors affecting aerosol particle transport and diffusion are also considered. The particle deposition velocity is calculated based on particle diameter, density, gravitational acceleration, and the dynamic viscosity of the atmosphere. The process of pollutant transport and diffusion in the near-surface layer is divided into two subproblems. To determine pollutant concentrations, fluid mechanics equations are solved with appropriate boundary conditions. To incorporate terrain orography, the flow of an ideal incompressible fluid is considered, where the velocity field is determined by solving the velocity potential equation and taking into account the deformation of the flow as it interacts with the underlying terrain.

References

Воронов О.В. и др. К вопросу применения моделей пограничного слоя атмосферы для расчета загрязняющих примесей от разнообразных источников // Наука и техника транспорта. – 2021. – № 1. – С. 82-87.

Седляров О.И., Бородина Е.С. Моделирование распространения загрязняющих веществ в приземном слое атмосферы с учетом влияния застройки и рельефа местности // Промышленные процессы и технологии. – Т. 2, № 4. – 2022. – С. 9-21. – doi: http://dx.doi.org/10.37816/2713-0789-2022-2-2(4)-8-25.

Берлянд М.Е. Современные проблемы атмосферной диффузии и загрязнения атмосферы. – Л.: Гидрометеоиздат, 1975. – 448 с.

Берлянд М.Е. Прогноз и регулирование загрязнения атмосферы. – Л.: Гидрометеоиздат, 1985. – 272 с.

Лайхтман Д.Л. Физика пограничного слоя атмосферы. – Л.: Гидрометеоиздат, 1970. – 342 c.

Peri´a˜nez R. et al. Оценка вертикального коэффициента турбулентной диффузии выбросов промышленных предприятий // Известия РАН. Физика атмосферы и океана. – 2015. – Т. 51. – № 4. – С. 502-507.

Lateb M. et al. On the use of numerical modelling for near-field pollutant dispersion in urban environments: a review // Environmental Pollution. – 2016. – Vol. 208. – P. 271-283. – doi: http://dx.doi.org/10.1016/j.envpol.2015.07.039.

Martins V. et al. Origin of inorganic and organic components of PM2.5 in subway stations of Barcelona // Environmental Pollution. – 2016. – Vol. 208. – P. 125-136. – doi: http: //dx.doi.org/10.1016/j.envpol.2015.07.004.

Yang T. et al. A mathematical model for soil solute transfer into surface runoff as influenced by rainfall detachment // Sci. Total Environ. – 2016. – Vol. 557-558. – P. 590-600. – doi: http://dx.doi.org/10.1016/j.scitotenv.2016.03.087.

Anderson P., Paulo X., Davidson M. Simulation of atmospheric pollutant dispersion considering a bi-flux process and fractional derivatives // Atmospheric Pollution Research. – 2020. – Vol. 11, Issue 1. – P. 57-66.

Sharan M., Gopalakrishnan S. Mathematical Modeling of Diffusion and Transport of Pollutants in the Atmospheric Boundary Layer // Pure appl. geophys. – 2003. – Vol. 160. – P. 357-394. – doi: http://dx.doi.org/10.1007/s00024-003-8784-5.

Lorenzo G. et al. Atmospheric Pollutant Dispersion over Complex Terrain: Challenges and Needs for Improving Air Quality Measurements and Modeling // Atmosphere. – 2020. – Vol. 11. – doi: http://dx.doi.org/10.3390/atmos11060646.

Weichenthal S. et al. Characterizing the spatial distribution of ambient ultrafine particles in Toronto: a land use regression model // Environmental Pollution. – 2016. – Vol. 208. – P. 241-248. – doi: http://dx.doi.org/10.1016/j.envpol.2015.04.011.

Halonen J.I. et al. Is long-term exposure to traffic pollution associated with mortality? A small-area study in London // Environmental Pollution. – 2016. – Vol. 208. – P. 25-32. – doi: http://dx.doi.org/10.1016/j.envpol.2015.06.036.

Hong Y. et al. Integrating atmospheric deposition, soil erosion and sewer transport models to assess the transfer of traffic-related pollutants in urban areas // Environmental Modelling & Software. – 2017. – Vol. 96. – P. 158-171. – doi: http://dx.doi.org/10.1016/j.envsoft.2017.06.047.

Halonen J.I. et al. Long-term exposure to traffic pollution and hospital admissions in London // Environ. Pollut. – 2016. – Vol. 208. – P. 48-57. – doi: http://dx.doi.org/10.1016/j.envpol.2015.09.051.

Ravshanov N., Tashtemirova N.N., Ubaidullaev M.Sh. Direct and connected problem of transport of harmful substances in the atmosphere, taken into account of the absorption and capture of particles by vegetation in the ground layer // Bulletin of TUIT: Management and Communication Technologies. – 2024. – № 2(14). – https://shorturl.at/8mUvP.

Равшанов Н., Таштемирова Н., Каршиев Д.А. Моделирование процесса распространения аэрозольных частиц в пограничном слое атмосферы с учетом их поглощения и захвата растительным покровом // Проблемы вычислительной и прикладной математики. – 2024. – №2(56). – С. 41-57.

Shafiev T., Nazarov Sh. Studies of the influence of vegetation cover on the process of transfer and diffusion of harmful substances in the atmosphere // E3S Web of Conferences. – 2023. – Vol. 431. – P. 1-11. – doi: http://dx.doi.org/10.1051/e3sconf/202343101059.

Равшанов Н., Назаров Ш.Э., Расулмухаммедов А. Исследование основных параметров процессе диффузии вредных веществ в атмосфере // Проблемы вычислительной и прикладной математики. – 2022. – №2/1(40). – С. 174-191.

Ravshanov N., Nazarov Sh.E., Boborakhimov B. Modeling the Process of Pollutant Spread in the Atmosphere with Account for the Capture of Particles by Vegetation Elements // Lobachevskii Journal of Mathematics. – 2024. – Vol. 45, No. 3. – P. 1156-1169.

Gutko E. CFD modeling of the atmosphere pollution in the case of accidents for solving monitoring problems // Вiстник Днiпропетровского унiверситета. Механiкa. – 2013. – Т. 1, Вип. 17. – С. 163-168.

Самарский А.А. Теория разностных схем.. – М.: Наука, 1983. – 616 с.

Полянин А.Д. Справочник по точным решениям уравнений тепло-массопереноса. – М.: Факториал, 1998. – 368 с.

Downloads

Published

2025-01-07

Issue

Section

Статьи