NUMERICAL SIMULATION OF NONLINEAR PROBLEMS OF DYNAMICS OF VISCOELASTIC SYSTEMS WITH FINITE NUMBERS OF DEGREES OF FREEDOM

Authors

  • M. Yusupov Tashkent State Agrarian University Author
  • D.K. Karshiev Tashkent State Agrarian University Author
  • U.B. Sharipova Tashkent State Agrarian University Author

Keywords:

deformation, relaxation, instantaneous stiffness, rheological properties, viscoelasticity, physical nonlinearity, integral operator, heredity kernel

Abstract

The problem of dynamic vibration dampers of hereditarily deformable systems with f inite numbers of degrees of freedom is considered. The rheological properties of the spring (suspension) are taken into account using an integral model with the Koltunov Rzhanitsyn relaxation kernel. The behavior of a system with a damper is considered under free damped oscillations caused by given initial conditions, as well as under con stant, pulsed and periodic external influences. The results obtained allow us to conclude that it is advisable to use dynamic dampers to reduce the amplitude of vibrations in both ideally elastic and hereditarily deformable systems during transient processes. To solve problems, a computational algorithm based on the use of quadrature formulas was used.

References

Yeliseyev S.V., Artyunin A.I. Prikladnaya teoriya kolebaniy v zadachakh dinamiki lineynykh mekhanicheskikh sistem.– Novosibirsk: Nauka, 2016.– 459 s.

Yeliseyev S.V. Dinamicheskiy gasitel' kolebaniy kak sredstvo upravleniya dinamicheskim sostoyaniyem vibrozashchitnoy sistemy // Nauchnoye izdaniye MGTU im. N.E.Baumana, Nauka i obrazovaniye.– 2011.– №8.– C. 1-11.

Khomenko A.P., Yeliseyev S.V. O nekotorykh svoystvakh dinamicheskogo gasheniya kolebaniy v mekhanicheskikh sistemakh.– Irkutsk: IGU, 2000.– 293 s.

Nguyen D.KH. Vozmozhnosti rychazhnogo korrektora v zadachakh dinamicheskogo gasheniya kolebaniy // Vestnik IrGTU.– 2017.– T. 21, №8.– C. 38-48.

Aldoshin G.T. Teoriya lineynykh i nelineynykh kolebaniy.– Sankt-Peterburg: LAN', 2013.– 320 c.

Korenov B.G., Reznikov L.M. Dinamicheskiye gasiteli kolebaniy.– M.: Nauka, 1988. 303 s.

Karamyshkin I.I. Dinamicheskoye gasheniye kolebaniy. M.: Mashinostroyeniye, 1988.– 106 s.

Yeleseyev S.V., Nerubenko G.P. Dinamicheskiye gasiteli kolebaniy.– Novosibirsk: Nau ka, 1982.– 144 s.

Panovka YA.G., Gubanova I.I. Ustoychivost' i kolebaniya uprugikh sistem.– M.: Nauka, 1987.– 352 s.

Sorokin Ye.S. K teorii vnutrennego treniya pri kolebaniyakh uprugikh sistem.– M.: Gosstroyizdat, 1960.– 131 s.

Rabotnov YU.N. Elementy nasledstvennoy mekhaniki tverdykh tel.– M.: Nauka, 1977.– 384 s.

Kauderer G. Nelineynaya mekhanika.– M.: Mir, 1961.– 778 s.

Yusupov M. et al. Vertical vibrations of traction engine with viscoelastic suspension // E3S Webof Conference Series.– 2023.– Vol. 365.– doi: http://dx.doi.org/10.1051/e3sconf/ 202336501022.

Yusupov M. et al. Vehicle oscillation taking into account the rheological properties of the suspension // IOP Conference Series: Materials Science and Engineering.– 2020.– Vol. 896.– doi: http://dx.doi.org/10.1088/1757-899X/896/1/012141.

Mirzaev S. et al. Vibrations of high-rise buildings under seismic impact taking into account physical nonlinearity // Journal of Physics: Conference Series.– 2022.– Vol. 2176. doi: http://dx.doi.org/10.1088/1742-6596/2176/1/012052.

Published

2024-05-21

Issue

Section

Статьи