Optimal Quadrature Formulas for Calculating Integrals of Rapidly Oscillating Functions

Authors

  • Kh.M. Shadimetov Tashkent State Transport University Author
  • O.Kh. Gulomov National Research University "Tashkent Institute of Irrigation and Agricultural Mechanization Engineers" Author

Keywords:

Sobolev space, extremal function, error functional

Abstract

In this work, using the method of periodization of functions, optimal quadrature formulas of Hermite type will be constructed in spaces where the second derivatives are summable with squares. For this purpose, optimal quadrature formulas are used in spaces of periodic functions. In addition, exact upper bounds will be obtained for the constructed optimal quadrature formulas for the approximate calculation of integrals of rapidly oscillating functions.

References

Dahlquits G. Convergence and stability in the numerical integration of ordinary differential equations. -Math. Scand., – 1956. – v.4. – P. 33–52.

Dahlquits G. Stability and error bounds in the numerical integration of ordinary differential equations. - Trans. Roy. Inst. Technol. Stockholm, – 1959.

Бабушка И., Витасек Э., Прагер М. Численные процессы решения дифференциальных уравнений. - Мир, Москва, – 1969. – 369 р.

Соболев С.Л. Введение а теорию кубатурных формул. : - Наука, Москва, – 1974. – 808 с

Шадиметов Х.М., Мирзакабилов Р.Н. Задача о построении разностных формул. Проблемы вычислительной и прикладной математики, - Ташкент, – 2018. – № 5 (17). – C. 95–101.

Shadimetov Kh.M., Mirzakabilov R.N. On a construction method of optimal difference formulas. AIP Conference Proceedings, 2365, 020032, – 2021.

Шадиметов Х.М., Мирзакабилов Р.Н. Оптимизация разностных методов в фактор пространстве Соболева. Проблемы вычислительной и прикладной математики, - Ташкент, – 2021. – № 5. – C. 137–152.

Шадиметов Х.М., Мирзакабилов Р.Н. Оптиммальные разностные формулы в пространстве Соболева. Современная математика. Фундаментальные направления, – том.8, – №1. – 2022. – C. 167–177.

Hayotov A.R., Karimov R.S. Optimal difference formula in the Hilbert space ????(2,1) 2 (0, 1). Problems of Computational and Applied Mathematics, - Tashkent, – 5(35). – 2021. – P. 129–136.

Hayotov A.R., Bozarov B.I. Optimal quadrature formula with cosine weight function. Problems of Computational and Applied Mathematics, Tashkent, – 4(34)., – 2021. – P. 106–118.

Akhmedov D.M., Atamuradova B.M. Construction of optimal quadrature formulas for Cauchy type singular inyegrals in the ????(1,0)2 (0, 1) space, Uzbek mathematical Journal, –2022. – Vol.66. – Issue 2. – P. 5–9. DOI: 10.29229/uzmj.2022-2-1

Downloads

Published

2025-01-03

Issue

Section

Статьи