A Sharp Upper Bound for the Error of Quadrature Formulas in Hilbert Space ????(????)2,????

Authors

  • G.N. Akhmadaliev Tashkent State Transport University Author

Keywords:

quadrature formulas, the error functional, exact upper bound for error, Hilbert space, optimal coefficients

Abstract

One of the main problems of computational mathematics is the optimization of computational methods in function spaces. Optimization of computational methods has proven itself well in problems of the theory of quadrature formulas. This paper studies the problem of constructing an optimal quadrature formula in a Hilbert space. The article considers the problem of finding an exact upper bound for the error of quadrature formulas in the Hilbert space ????(????)2,???? found.

References

Алберг Дж., Нильсон Э., Уолш Дж. Теория сплайнов и ее приложения.: М.: Мир, – 1972. – 316 с.

Никольский С.М. К вопросу об оценках приближений квадратурными формулами.: Успехи матем. наук. -Москва,- – 1950. – Т.5.– №3. – С. 165–177.

Никольский С.М. Квадратурные формулы.: — Москва: Наука, – 1988. – 256 с.

Sard A. Best approximate integration formulas, best approximate formulas.: American J. of Math. – 1949. - LXXI. – P. 80–91.

Meyers L.F., Sard A. Best approximate integration formulas.: J.Math and Phus. – 1950. XXIX. – P. 118–123.

Coman G. Formule de cuadrature de tip Sard.: Stud. Univ. Babes-Bolyai. Ser. Math.-mech. – 1972. – vol.17. – №-2. – P. 73–77.

Coman G. Monoplines and optimal quadrature Formule.: Rend . mat., – 1972. – vol.6. №-5 – P. 567–577.

K.M. Shadimetov., A.R. Hayotov., F.A. Nuraliev Construction of Optimal Interpolation Formulas in the Sobolev Space: Journal of Mathematical Sciences (United States). – 2022. – 264(6). – P. 782–793.

D.M. Akhmedov., A.R. Hayotov., K.M. Shadimetov Optimal quadrature formulas with derivatives for Cauchy type singular integrals.: Applied Mathematics and Computation. – 2018. – vol. 4. – P. 150–159.

Shadimetov Kh.M., Akhmadaliev G.N. Optimal coefficients of the quadrature formulas in the space ????3,????: AIP Conf. Proc. 3004, 060017 – 2024. https://doi.org/10.1063/5.0199926

Vaskevich V.L. Invariant cubature formulas of Gregory type for a multidimensional cube.: Siberian Journal of Industrial Mathematics. Novosibirsk. – 2003. – vol.3. – P. 34–36.

Lanzara F. On optimal quadrature formulae: Ineq. Appl, – 2000. – P. 201–202.

Arcangeli R., Lopez de Silanes M.C., Torrens J.J. Multidimensional minimizing splines.: Kluwer Academic publishers. Boston, – 2004. – vol. 4. – P. 21–41.

Соболев С.Л. О кубатурных формулах на сфере, инвариантных при преобразованиях конечных групп вращений.: М. Докл. АН СССР, – 1962. – Т.146. –№2. – C. 310–313.

Владимиров В.С. Обобщенные функции в математической физики. : Москва, Наука, – 1979. – 320 с.

Downloads

Published

2025-01-03

Issue

Section

Статьи