On one modification of the Sobolev method for approximating a function
Keywords:
Hilbert space, extremal function, error functional, interpolation formulaAbstract
In spline theory, there are algebraic and variational approaches. In the algebraic approach, splines are considered as some smooth piecewise polynomial functions. In the variational approach, splines are understood as elements of a Hilbert or Banach space that minimize certain functionals. Then, the problems of existence, uniqueness, and convergence of splines and algorithms for constructing them based on the proper properties of splines are studied. In this paper, we study the problem of constructing optimal interpolation formulas in a Hilbert space. Here, using the Sobolev method, an algorithm is given for solving a system of linear algebraic equations for the coefficients of optimal interpolation formulas. An explicit expression for the optimal coefficients of an interpolation formula in a Hilbert space is obtained.
References
Ahlberg J.H., Nilson E.N., Walsh J.L. The theory of splines and their applications. New York: Academic Press, – 1967. – 316 p.
de Boor C. Best approximation properties of spline functions of odd degree. J. Math. Mech. – 1963. – vol.12. – P. 747–749.
de Boor C. A practical guide to splines.New York Heidelberg Berlin: Springer, – 1978. – 342 p.
Лоран П.Ж. Аппроксимация и оптимизация. М.: Мир, – 1975. – 496 с.
Mastroianni G., Milovanovi’c G.V. Interpolation processes. Basic theory and applications. — Berlin: Springer, – 2008. – 262 p.
Schoenberg I.J. On trigonometric spline interpolation. J. Math. Mech. – 1964. – vol. 13. – P. 795—825.
Schumaker L.L. Spline functions: basic theory. Cambridge: Cambridge University Press, – 2007. – 600 p.
Стечкин С.Б., Субботин Ю.Н. Сплайны в вычислительной математике. М.: Наука, – 1976. – 248 с.
Василенко В.А. Сплайн-функции: теория, алгоритмы, программы. Новосибирск: Наука, – 1983. – 215 с.
Болтаев А.К., Шоназаров С.К. Система для нахождения оптимальных коэффициентов интерполяционных формул. Проблемы вычислительной и прикладной математики. – 2022. – №5/1(44), – С. 54–63.
Соболев С.Л. Введение в теорию кубатурных формул. М. Наука, – 1974. – 808 с.
Соболев С.Л., Васкевич В.Л. Теория кубатурных формул. СО АН России. Новосибирск, – 1996. – 484 с.
Шадиметов Х.М. Дикретный аналог оператора и его построения. Проблемы вычислительной и прикладной математики. – 1985. – № 79. – С. 22–35.
Shadimetov Kh.M., Hayotov A.R. Optimal quadrature formulas in the sense of Sard in ????(????,????−1)
(0, 1) space. Calcolo, – 2014. 51, – № 2, – P. 211–243.
Hayotov A.R. The discrete analogue of a differential operator and its applications. Lithuanian Mathematical Journal, – 2014. 54, – № 3. – P. 290–307.
Boltaev A.K., Hayotov A.R., Shadimetov Kh.M. Construction of optimal quadrature formulas exact for exponentional-trigonometric functions by Sobolev’s method. Acta Mathematica Sinica, English series, – 2021. 37, – № 7. – P. 1066–1088.
Shadimetov Kh., Boltaev A., Parovik R. Optimization of the approximate integration formula using the discrete analogue of a high-order differential operator. Mathematics, – 2023. 11, 3114.
Boltaev A.K., Shadimetov Kh.M., Parovik R.I. Construction of optimal interpolation formula exact for trigonometric functions by Sobolev’s method. Вестник Краунц, Физмат, науки, – 2022. Т38, №1, – С. 131–146.
Hayotov A.R., Milovanovi’c G.V., Shadimetov Kh.M. Interpolation splines minimizing a semi-norm. Calcolo, – 2014. 51, – № 2. – P. 245–260.

Downloads
Published
Issue
Section
License
Copyright (c) 2024 А.К. Болтаев (Автор)

This work is licensed under a Creative Commons Attribution 4.0 International License.