NUMERICAL MODEL AND COMPUTATIONAL ALGORITHM FOR SOLVING THE PROBLEM OF FILTRATION OF UNCONFINED GROUNDWATER

Authors

  • E. Nazirova Tashkent University of Information Technologies named after Muhammad al-Khwarizmi Author
  • M. Shukurova Каршинский филиал Ташкентского университета информационных технологий имени Мухаммада Аль-Хорезми Author

Keywords:

groundwater level, water confinement, filtration coefficient, filtrationinfiltration, filtration zone

Abstract

This article presents the results of studies on the theory of filtration in an accurate forecast of changes in the level of groundwater during irrigation in the republic, as well as in assessing the impact of artificial and natural drainage structures on changes in the level of groundwater and one of the most important aspects of complex research mathematical modeling of water layers with the use of various mathematical models of the theory of filtration, as well as the effective use of digital and computer modeling in solving problems of the theory of filtration.

References

Abutaliev F.B. and. etc. 1976. Application of numerical methods and computers in hydro geology. Tashkent ”Fan”

Belman R., Kalaba R. 1968. Quasilinearization and nonlinear boundary value problems. Mir, M.,

Davydov L.K., Dmitrieva A.A., Konkina N.G. 1973. "General Hydrology". Ed. 2nd, revised and supplemented.- L: Gidrometizdat,– 464 p.

Khuzhayarov B.Kh. 2004. Macroscopic simulation of relaxation mass transport in a porous medium. Fluid Dynamics.– Vol. 29,– no. 5.– P. 693–701.

Suzuki A., Horne RN, Makita H., Niibori Y., Fomin SA, Chugunov VA, Hashida T. 2013. Development of fractional derivative-based mass and heat transport model. Proceedings, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stan ford, California, February 11-13. SGP-TR-198.

Khuzhayorov B.Kh., Makhmudov Zh.M. 2014. Mathematical models of filtration of inho mogeneous liquids in porous media. Tashkent: Fan,– 280 p.

Khuzhayorov B., Dzhiyanov T., Khaydarov O. 2018. Double-Relaxation Solute Transport in Porous Media. International Journal of Advanced Research in Science, Engineering and Technology. Vol. 5, Issue 1, January– P. 5094-5100.

Fomin S.A., Chugunov V.A. and Hashida T. 2011. Non-Fickian mass transport in fractured porous media Advances in Water Resources. 34 (2)– P. 205–214.

Zikiryaev Sh.Kh. 2012. "Problems of filtration of inhomogeneous liquids taking into account adsorption and heterogeneity of filling the pore space": Abstract ... cand. phys.-mat. sciences.. Samarkand,– 42 p.

Molokovich Yu.M. 2006. Non-equilibrium filtration and its application in oilfield practice.. M.- Izhevsk: Research Center "Regular and Chaotic Dynamics"; Institute for Computer Research,– 214 p.

Nikiforov A.I., Sadovnikov R.V. 2016. Solving the problems of waterflooding of oil reservoirs using polymer-dispersed systems on a multiprocessor computer system.. Institute of Me chanics and Mechanical Engineering of the Kazan Scientific Center of the Russian Academy of Sciences,– Volume 28,– No. 8.– P. 112–126.

Nazirova E.Sh. 2019. Mathematical models, numerical methods and software complexes for studying the processes of filtration of liquids and gases. Springer, Diss ... Dr. Tech. sciences.- Tashkent,– 227 p.

Samarskiy A.A. 1952. Introduction to the theory of difference schemes. M: "Science

Saidullaev U.Zh. 2019. “Derivation and numerical analyses of suspensions filtering and f iltration hydrodynamic models”. Diss. PhD ... Phys.-Math. sciences. Tashkent,– 112 p.

Makhmudov Zh.M. 2019. "Improvement and analysis of mathematical models of filtration of inhomogeneous liquids in porous media". Diss ... Dr. Phys.-Math. sciences. Samarkand,– 216 p.

H.F. Wang and M.P. Anderson 1995. Introduction to Groundwater Modeling. Academic Press,

A. Fowler 2011. Mathematical geoscience, Springer.

T. LochbYouhler, J. Doetsch, R. Brauchler, and N. Linde 2013. Structure-coupled joint in version of geophysical and hydrological data. Geophysics,– vol. 78,– no. 3,– P. ID1–ID14.

Comisiron Nacional del Agua, 2014. Determinaciron de la disponibilidad de agua en el acurıfero Valle de Puebla (2014), Estado de Puebla, Puebla, Mexico,

J. Bear and A. H. D.Cheng 2010. Modeling Groundwater Flow and Contaminant Transport. Springer,

G. DeMarsily, F. Delay, V. Teles, and M.T. Schafmeister 1998. Some current methods to represent the heterogeneity of natural media in hydrogeology. Hydrogeology Journal,– vol. 6,– no. 1,– P. 115–130.

Yang Y.S., Kalin R.M., Zhang Y., Lin X., Zou L. 2001. Multi-objective optimization for sustainable groundwater resource management in a semiarid catchment. Hydrol. Sci. J. P. 55–72.

Maier H.R., Kapelan Z., Kasprzyk J., Kollat J., Matott L., Cunha M., Dandy G., Gibbs M., Keedwell E., Marchi A., et al. 2014. Evolutionary algorithms and other metaheuristics in water resources. Current status, research challenges and future directions. Environ. Model. Softw. 62,– P. 271–299.

Horne A., Szemis J.M., Kaur S., Webb J.A., Stewardson M.J., Costa A., Boland N. 2016. Optimization tools for environmental water decisions: A review of strengths, weaknesses, and opportunities to improve adoption. Environ. Model. Softw.– 84,– P. 326–338.

Mirghani B.Y., Mahinthakumar K.G., Tryby M.E., Ranjithan R.S., Zechman E.M. 2009. A parallel evolutionary strategy based simulation-optimization approach for solving ground water source identification problems. Adv. Water Resour. 32,– P. 1373–1385.

Ayvaz M.T. 2009. Application of Harmony Search algorithm to the solution of groundwater management models. Adv. Water Resour. 32,– P. 916–924.

Safavi H.R., Darzi F., Mariño M.A. 2010. Simulation-optimization modeling of conjunctive use of surface water and groundwater. Water Resour. Manag.– 24,– P. 1965–1988.

Downloads

Published

2024-05-21

Issue

Section

Статьи