Construction of a Cubature Formula of the Fifth Degree of Accuracy Containing the Values of Partial Derivatives
Keywords:
cubature formula, degree of algebraic accuracyAbstract
A number of books by I.P. Mysovkikh, A.H. Stroud, V.I. Krylov and H.T. Shulgina are devoted to the approximate calculation of integrals, where the theory of constructing quadrature and cubature formulas is presented and exact formulas for algebraic polynomials of degree ???? for standard domains such as ???? – dimensional cube, ???? – dimensional ball, surface of ???? – dimensional ball (sphere), ???? – dimensional space with weight functions, where are given. In the works by Y.Xu, G.P. Ismatullayev, S.A. Bakhramov, cubature formulas were constructed using orthogonal polynomials by the reproducing kernel method and the Radon method with the minimum number of nodes for the domain and the weight where without the participation of partial derivatives. In this paper, we construct a cubature formula for the domain Ω and the weight exact for polynomials of the fifth degree involving the values partial derivatives at the point (0, 0).
References
V.I. Krylov 1967. Approximate calculation of integrals, Nauka, Moscow,
V.I. Krylov and L.T. Shulgina 1966. Handbook on numerical integration, Nauka, Moscow,
S.L.Sobolev 1974. Introduction to the theory of Cubature formnulas, Nauka, Moscow,
A.H. Stroud 1971. Approximate calculation of multiple integrals, Englewood Cliffs, New Jersey: Prentice-Hall,
S.M. Nikolskii 1988. Quadrature formulas, Nauka, Moscow,
I.P. Mysovskikh 1988. Interpolation cubature formulas, Nauka, Moscow,
T.M. Bykova 1969. Cubature formulae with a minimal number of nodes in a plane region which are exact for polynomials of degree 4, Vestnik Leningrad. Univ. Math.(in Russian), – P. 145–147.
T.M. Bykova 1974. Cubature formulae for three-dimensional integrals of degree four with eleven nodes, Isw. AN BSSR.Ser. Phys.-Math.(in Russian) – vol. 10. – P. 51–54.
V.Ja. Cernicina 1973. Construction of domains for which there exist interpolation cubature formulae with the least number of nodes, Vestnik Leningrad. Univ., Mat. Meh. Astronom. Vyp.(in Russian) – Vol 28. – P. 144–147.
R. Cools 1997. Constructing Cubature Formulae: The Science Behind the Art, Acta Numerica, Cambridge University Press, Cambridge, – Vol.6. – P. 1–54.
R. Cools 1999. Monomial cubature rules since ”Stroud”: a compilation Part 2, J. Comput. Appl. Math., – vol. 112, – P. 21–27.
R. Cools, A. Haegemans 1988. Construction of symmetric cubature formulae with the number of knots (almost) equal to Mцller’s lower bound, Numerical Integration, ISNM, Birkhauser, Basel, – Vol. 85. – P. 25–36.
R. Cools, P. Rabinowitz 1993. Monomial cubature rules since ”Stroud”: a compilation, J.Comput. Appl. Math., – Vol. 48. – P. 309–326.
R. Cools, I.P. Mysovskikh, H.J. Schimid 2001. Cubature formul and orthogonal polynomials, J. Comput Appl. Math, – Vol.27. – P. 121–152.
R. Cools 2003. An encyclopaedia of cubature formulas, Journal of complexity, 19(3), – P. 445–453.
H.J. Schmid 1988. On minimal cubature formulae of even degree, Integration III, International Series of Numerical Mathematics, Birkhauser, Basel, – Vol. 85. – P. 216–225.
H.J. Schmid 1995. Two-dimensional minimal cubature formulas and matrix equations, SIAM J. Matrix Anal. Appl. – Vol. 16. – P. 898–921.
H.J. Schmid 1994. On bivariate Gaussian cubature formulae, Proc. Amer. Math. Soc. Appl., – Vol. 122. – P. 833–841.
Y. Xu 1993. On multivariate orthogonal polynomials, SIAM J. Math. Anal., – Vol. 24. – P. 783–794.
Y. Xu 1994. Common zeros of polynomials in several variables and higher dimensional quadrature, Pitman Research Notes in Mathematics Series, Longman Scientic and Technical, Harlow, – Vol. 312, – P. 783–794.
Y. Xu 1997. On orthogonal polynomials in several variables,he Fields Institute for Research in Mathematical Sciences, Communications Series,American Mathematical Society, Providence, RI, – Vol. 14. – P. 247–270.
G.P. Ismatullayev, S.A. Bakhromov, R.N. Mirzakabilov 2021. Construction of cubature formulas with minimal number of nodes, AIP Conference Proceedings, – Vol. 2365. 020019,
G.P. Ismatullayev, S.A. Bakhromov, R.N. Mirzakabilov 2020. Construction of cubature formulas with fourth and fifith degrees by the reproducing kernel and Radon methods, Uzbek matematical journal., – Vol. 2. – P. 76–84.
Kh.M. Shadimetov 1999. Weight optimal cubature formulas in Sobolev’s periodic space,USiberian J. Numer. Math. Novosibirsk, – Vol. 2, Siberian J. Numer. Math. Novosibirsk,
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Г.П. Исматуллаев, С.А. Бахромов, Р.Н. Мирзакабилов (Автор)

This work is licensed under a Creative Commons Attribution 4.0 International License.