An optimal interpolation formula with derivatives in Sobolev space

Authors

  • N.N. Olimov V.I.Romanovskiy Institute of Mathematics Author
  • D.B. Bekmurodova Secondary school No. 154 Author

Keywords:

interpolation, splines, interpolation with derivatives, extremal function, error functional

Abstract

The construction of an optimal interpolation formula within the Hilbert space is the focus of this paper. The difference between a given function and an interpolation formula is estimated by the norm of the error functional. We use an extremal function for the error functional ???? in order to compute the norm. The interpolation formula’s coefficients and nodes affect the error functional. Here, with established nodes, the minimal value for the norm of the error functional is calculated with respect to coefficients. Encouraged, we obtain the system of linear equation for the optimal interpolation formula’s coefficients.

References

S.S. Babaev, N. Olimov, Sh. Imomova, B. Kuvvatov 2024. Construction of natural ???? spline in ????(2,1)

,???? space. AIP Conf. Proc., 3004 (060021) doi: http://dx.doi.org/10.1063/5.0199595

Babaev S.S., Mamatova N.Kh., Hayotov A.R. 2017. Optimal interpolation formula in ????(????) 2 (0, 1) space. Uzbek Mathematical Journal, Vol. 2, – P. 23–31.

Yuyukin, Igor V. 2021. “Application of the spline-functions method in underwater relief computer visualization.” Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flotaimeni admirala S.O. Makarova., Vol. 13.1: – P. 64–79.

Rokiah R.A., Najah Gh., Azmin Sh.R., Ummul Kh.S. Din and Nasruddin H. Application of Cubic Spline in the Implementation of Braces for the Case of a Child. Journal of Mathematics and Statistics.,Malaysia,2012 , Vol 8(1): – P. 144–149,

S.S. Babaev, J.R. Davronov, A. Abdullayev, S.Z. Polvonov 2022. Optimal interpolation formulas exact for trigonometric functions AIP Conf. Proc., 2781 020064 doi: http://dx.doi.org/10.1063/5.0144752.

A.R. Hayotov, S.S. Babaev, Sh. Imomova, N.N. Olimov 2023. The error functional of optimal interpolation formulas in ????(2,1) 2,???? space AIP Conf. Proc., 2781 (020044) doi: http: //dx.doi.org/10.1063/5.0144752.

Hayotov A.R., Olimov N.N. 2023. An optimal interpolation formula of Hermite type in the Sobolev space. Abstracts of the 8th international conference “Actual problems of applied mathematics and information technologies” - Al-Khwarizmi 2023 Tashkent , Uzbekistan, – P. 126-127.

Hayotov A.R., Olimov N.N. 2023. An optimal interpolation formula with derivatives in the Sobolev space . Abstracts modern problems differential equations and their applications 2023 Tashkent, Uzbekistan, – P. 111–112.

Ogniewski, Jens. Cubic Spline Interpolation in Real-Time Applications using Three Control Points. 2019. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision WSCG 2019, Plzen, Czech Republic

Sobolev S.L. 1974. Introduction to the theory of cubature formulas. (Russian), Nauka, Moscow.

Babaev S.S., A.R. Hayotov 2019. Optimal interpolation formulas in the space ????(????,????−1) 2 . Calcolo, Springer International Publishing, 56(3): – P. 1–25. doi: http://dx.doi.org/10.1007/s10092-019-0320-9.

Kh.M. Shadimetov, A.R. Hayotov 2013. Construction of interpolation splines minimizing semi-norm in ????(????,????−1) 2 (0, 1) space Bit Numer. Math., 53(2) (), 545–563. doi: http: //dx.doi.org/10.1007/s10543-012-0407-z.

Kh.M. Shadimetov, A.R. Hayotov, F.A. Nuraliev 2019. Optimal interpolation formulas with derivative in the space ????(????) 2 (0, 1) Filomat, 33, – P. 5661–5675. doi: http://dx.doi.org/10.2298/FIL1917661S.

A.R. Hayotov, S.S. Babaev, N.N. Olimov An optimal interpolation formula of Hermite type in the Sobolev space Filomat,(reprint)

Downloads

Published

2024-12-11

Issue

Section

Статьи