NUMERICAL MODELING OF 3D WIND VELOCITY FIELD IN THE ATMOSPHERE

Authors

  • F.A. Muradov Digital Technologies AND Artificial Intelligence Research Institute Author
  • N.N. Tashtemirova Tashkent University of Information Technologies named after Muhammad al-Khwarizmi Author
  • N.F. Eshboeva Digital Technologies AND Artificial Intelligence Research Institute Author
  • Kh.I. Goziev Digital Technologies AND Artificial Intelligence Research Institute Author

Keywords:

mathematical model, wind speed, Navier-Stokes equations, finite-difference method, solution approximation, run-through method

Abstract

As it is known the distribution of harmful substances in the atmosphere directly depends on the wind speed. This paper considers the problem of hydrodynamics in the form of nonlinear partial differential equations of Navier-Stokes to determine the velocity of air masses in the atmosphere in three directions u, v and w. The wind speed at each point of the considered region is different. Therefore, in this paper we have developed an algorithm for the numerical solution of the equations of atmospheric air mass velocity in three-dimensional space with respect to time and space variables, using a high-order approximation and an implicit difference scheme to ensure the stability of the computational process.

References

Sukhinov A. et al. Mathematical Model of Suspended Particles Transport in the Estuary Area, Taking into Account the Aquatic Environment Movement // Mathematics.– 2022. Vol. 10.– doi: http://dx.doi.org/10.3390/math10162866.

Tichonov A.N., Samarskii A.A. Equations of Mathematical Physics.– New York: Pergamon Press, 1963.

Samarskii A.A., Vabishchevich P.N. Numerical Methods for Solving Convection-Diffusion Problems // Mathematical Models and Editorial URSS.– Moscow, 2009.

Sukhinov A.I. et al. Predictive modeling of coastal hydrophysical processes in multiple processor systems based on explicit schemes // Math. Model. Comput. Simul.– 2018. Vol. 10.– P. 648–658.

Zhukov V.T. et al. Explicit-iterative scheme for the time integration of a system of Navier–Stokes equations // Math. Models Comput. Simul.– 2020.– Vol. 12.– P. 958–968.

Belotserkovsky O.M., Gushchin V.A., Shchennikov V.V. Application of the splitting method to solving problems of the dynamics of a viscous incompressible fluid // Comput. Math. Math. Phys.– 1975.– Vol. 15.– P. 197-207.

Sukhinov A.I. et al. Accounting method of filling cells for the solution of hydrodynamics problems with a complex geometry of the computational domain // Math. Models Comput. Simul.– 2020.– Vol. 12.– P. 232-245.

Sukhinov A.I. et al. Study of the accuracy and applicability of the difference scheme for solving the diffusion-convection problem at large grid Pyclet numbers // Comput. Contin. Mech.– 2021.– Vol. 13.– P. 437-448.

Temirbekov N. et al. Mathematical and computer modeling of atmospheric air pollutants transformation with input data refinement // Indonesian Journal of Electrical Engineering and Computer Science.– 2023.– Vol. 32, No. 3.– P. 1405-1416.– doi: http://dx.doi.org/ 10.11591/ijeecs.v32.i3.

Danaev N.T., Temirbekov A.N., Malgazhdarov E.A. Modeling of pollutants in the atmosphere based on photochemical reactions // Eurasian Chemico-Technological Journal.– 2014.– Vol. 16, No. 1.– P. 61-71.– doi: http://dx.doi.org/10.18321/ectj170.

Marchuk G.I. Mathematical modeling in the problem of the environment.– North Holland, 1982.

Penenko V.V., Tsvetova E.A., Penenko A.V. Variational approach and Euler’s integrating factors for environmental studies // Computers and Mathematics with Applications.– 2014.– Vol. 67, No. 12.– P. 2240–2256.– doi: http://dx.doi.org/10.1016/j.camwa.2014.04. 004.

Penenko A.V., Penenko V.V., Tsvetova E.A. Sequential data assimilation algorithms in air quality monitoring models based on weak-constraint variational principle // Numerical Analysis and Applicationsи.– 2016.– Vol. 9, No. 4.– P. 312-325.– doi: http://dx.doi. org/10.15372/sjnm20160405.

Vladimirovich P.A. et al. Numerical study of a direct variational data assimilation algorithm in Almaty city conditions // Eurasian Journal of Mathematical and Computer Applications.– 2019.– Vol. 7, No. 1.– P. 53-64.– doi: http://dx.doi.org/10.32523/ 2306-6172-2019-7-1-53-64.

Penenko V.V. et al. Methods for studying the sensitivity of air quality models and inverse problems of geophysical hydrothermodynamics // Journal of Applied Mechanics and Technical Physics.– 2019.– Vol. 60, No. 2.– P. 392-399.– doi: http://dx.doi.org/ 10.1134/S0021894419020202.

Nieuwstadt F., Dop H. Atmospheric turbulence and simulation of impurity propagation. Moscow: Hydrometeoizdat, 1985.– 352 p. (In Russian).

Nieuwstadt F., Dop H. Atmospheric Turbulence and Air Pollution Modelling.– Dordrecht: Springer, 1982.– doi: http://dx.doi.org/10.1007/978-94-010-9112-1.

Nieuwstadt F. An analytic solution of the time-dependent, one-dimensional diffusion equation in the atmospheric boundary layer // Atmospheric Environment.– 1980.– Vol. 14, No. 12.– P. 1361-1364.– doi: http://dx.doi.org/10.1016/0004-6981(80)90154-7.

Bureau of National statistics of The Republic of Kazakhstan / QAZSTAT.– 2021.– https: //stat.gov.kz/ru/industries/environment/stateco.

Temirbekov A.N. et al. Investigation of the Stability and Convergence of Difference Schemes for the Threedimensional Equations of the Atmospheric Boundary Layer // International Journal of Electronics and Telecommunications.– 2018.– Vol. 64, No. 3.– P. 391-396.

Chattopadhyay B.B., Singha Deo Sh. Mathematical Model in Air Pollution with Area Source // International Conference on Recent Trends in Artificial Intelligence, Iot, Smart Cities Application (ICAISC 2020).– Jharkhand, 2020.– doi: http://dx.doi.org/10.2139/ssrn. 3653343.

Martynenko S.I. Sovershenstvovaniye algoritmov dlya resheniya uravneniy Nav'ye Stoksa v peremennykh // Uchenyye zapiski Kazanskogo universiteta. Seriya Fiziko-matematicheskiye nauki.– 2007.– №149(4).– S. 105-120.

Martynenko S.I. Sovershenstvovaniye vychislitel'nykh algoritmov dlya resheniya uravneniy Nav'ye-Stoksa na strukturirovannykh setkakh // Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya Yestestvennyye nauki. 2008.– №2.– S. 78-95.

Ghia U., Ghia K.N., Shin C.T. High-Re Solutions for Incompressible Flow Using the Navier Stokes Equations and a Multigrid Method // J. Comp. Physics.– 1982.– Vol. 48.– P. 387-411.

Ravshanov N., Sharipov D.K., Narzullayeva N. Usovershenstvovannaya matematicheskaya model' protsessov perenosa i diffuzii vrednykh veshchestv v prizemnom pogranichnom sloye atmosfery // Nauchnoye obozreniye. Tekhnicheskiye nauki.– 2016.– №4.– S. 49-59.

Ravshanov N., Tashtemirova N.N., Muradov F.A. Issledovaniye sushchestvovaniya i yedinstvennosti resheniya zadachi perenosa i diffuzii aerozol'nykh chastits v atmosfere // Problemy vychislitel'noy i prikladnoy matematiki.– 2017.– №1(7).– S. 54-67.

Sharipov D.K., F.A. Muradov, Ravshanov Z.N. Matematicheskaya model' i vychislitel'nyy eksperiment dlya monitoringa i prognozirovaniya ekologicheskogo sostoyaniya po granichnogo sloya atmosfery // Problemy vychislitel'noy i prikladnoy matematiki.– 2017.– №6(12).– S. 15-28.

Ravshanov N., Muradov F.A., Tashtemirova N.N. Chislennoye modelirovaniye protsessa perenosa i diffuzii aerozol'nykh chastits v pogranichnom sloye atmosfery //Informatika: problemy, metodologiya, tekhnologii : materialy XVII Mezhdunarodnoy nauchno metodicheskoy konferentsii : v 5 t. T. 2.– Voronezh: Velborn, 2017.– S. 346-351.

Published

2024-05-21

Issue

Section

Статьи