Numerical calculation of turbulent flow in a channel with an obstacle based on COMSOL Multiphysics

Authors

  • Z.M. Malikov Institute of Mechanics and Seismic Stability of Structures Author
  • F.Kh. Nazarov Institute of Mechanics and Seismic Stability of Structures Author
  • S.K. Abdukhamdov Institute of Mechanics and Seismic Stability of Structures Author

Keywords:

mathematical modeling, turbulence models, Reynolds-averaged Navier- Stokes equations, models and k − e SST

Abstract

The paper presents the problem of numerical calculation of turbulent flow in a channel with an obstacle based on the COMSOL MULTIPHYSICS software package. Turbulent flow in a channel with an obstacle is a complex physical process that can be studied using numerical simulations, including the use of software packages such as COMSOL Multiphysics. Turbulence in a channel flow with an obstacle is characterized by vortex structures, three-dimensional motion and significant drag caused by the interaction of the flow with the obstacle. To simulate such a flow, various turbulence models can be used, such as the ke model, the kw model or the LES (large eddy method) models, as well as turbulence models based on the Reynolds equations (RANS). COMSOL Multiphysics provides the ability to simulate turbulent flow in a channel with an obstacle. The user can create channel geometry, add obstacles, set boundary conditions, select an appropriate turbulence model, and run flow simulations. As a result of modeling, it is possible to obtain data on speed, pressure, turbulent parameters and other characteristics of the flow. These data allow a deeper understanding of the physical process of real flow in a channel with an obstacle, as well as optimization of the design to improve flow characteristics. In the numerical calculation of turbulent flow in the channel, standard ke and SST models were used. The results obtained using the COMSOL MULTIPHYSICS package were compared with experimental data.

References

Tu J. A Beginning Computational Fluid Dynamics : a practical approach. – 2018. – 367 p.

Александрова Т.Н., Арустамян К.М., Романенко С.А. Применение математических методов анализа при оценке мировой практики селективной флотации медно-цинковых и колчеданно-полиметаллических руд // Обогащение руд. – 2017. – №5. – С. 21-27.

Abgrall R., Saurel R. Discrete equations for physical and numerical compressible multiphase mixtures // Journal of Computational Physics. – 2003. – Vol. 186. – Issue 2.

Belotserkovskii O.M. Numerical Methods in Fluid Dynamics. — Hemisphere Pub. Corp, 1978. – 339 p.

Годунов С.К. Разностный метод численного расчета разрывных решений уравнений гидродинамики // Математический сборник. – 1959. — Т. 47, № 3. – С. 271-306.

Jang C.B., Choi S.W., Baek J.B. CFD modeling and fire damage analysis of jet fire on hydrogen pipeline in a pipe rack structure // International Journal of Hydrogen Energy. – 2015. — Vol. 40, Issue 45.

Darema F. A single-program-multiple-data computational model for EPEX/FORTRAN Parallel Computing. – 1988. – Vol. 7, Issue 1.

Spalart P.R., Allmaras S.R. A one-equation turbulence model for aerodynamic flow // AIAA Paper. – 1992. – Vol. 12. – P. 439-478.

Shur M.L, Strelets M.K., Travin A.K., Spalart P.R. Turbulence modeling in rotating and curved channels: Assessing the Spalart-Shur correction // AIAA Journal. – 2000. – Vol. 38.– P. 784-792.

Mentor F.R. Turbulence Models with Two Equations for Engineering Applications // AIAA Journal. – 1994. – Vol. 32, No. 8. – P. 1598-1605.

Johnson F.T., Tinoco E.N., Yu N.J. Thirty years of development and application of CFD at Boeing Commercial Airplanes, Seattle // Computers & Fluids. – 2005. – Vol. 34, No. 10. - P. 1115-1151.

Leifsson L., Koziel S. Aerodynamic shape optimization by variable-fidelity computational fluid dynamics models: A review of recent progress // Journal of Computational Science. –2015. – Vol. 10. – P. 45-54.

Aksenov A., Dyadkin A., Pokhilko V. Overcoming of barrier between CAD and CFD by modified finite volume method // ASME Publications PVP. – 1998. – Vol. 377. – P. 79-83.

Wilcox D.C. Turbulence modeling for CFD. – DCW Industries Inc., 1994.

Потемкин В.А., Хасенов А.М., Потапов С.Д. Применение методов вычислительной гидродинамики при моделировании реологических свойств суспензий в процессах переработки минерального и углеводородного сырья // Научный аспект. – 2018.– №4. - С. 811-818.

Маликов З.М., Назаров Ф.Х. Математическое моделирование и численное исследование переноса твердых частиц в воздушном классификаторе // Проблемы вычислительной и прикладной математики. – 2017.– №5. – С. 47-49.

Malikov Z.M., Nazarov F.Kh. Study of turbulence models for calculating a strongly swirling flow in an abrupt expanding channel // Computer Research and Modeling. – 2021. – Vol. 13, Issue 4. – P. 793-805.

Маликов З.М., Назаров Ф.Х., Мадалиев М.Э. Численное моделирование обтекания плоской пластины турбулентным потоком воздуха с нулевым градиентом давления на основе ???? −???? моделей // Проблемы вычислительной и прикладной математики. – 1992. – №4. – С. 33-40.

Маликов З.М., Назаров Ф.Х., Мадалиев М.Э. Применение модифицированной ???? − ???? модели для исследования затопленной осесимметричной турбулентной струи // Проблемы вычислительной и прикладной математики. – 2019. – №34. – С. 87-93.

Nazarov F.Kh., Khasanov S.M., Yakubov A.A. Computational experiment of swirling flows of turbulence models SA and SST // International Journal of Recent Technology and Engineering. – 2019. – Vol. 8, Issue 4. – P. 2140-2144.

Маликов З.М., Назаров Ф.Х., Мадалиев М.Э. Сравнение современных моделей турбулентности для течения Тейлора-Куэтта // Вестник Томского государственного университета. Математика и механика. – 2022. – №78. – С. 125-142.

Larsen P.S., Westergaard C.H., Koch C.W. Experimental and numerical Study of fence – on – wall case // Month intermediate report of AFM Technical University of Denmark. –2019. – Vol. 8, Issue 4.– P. 2140-2144.

Aleksandrova T.N., Romashev A.O., Aleksandrov A.V. About modeling of rheological properties of heavy oil suspensions // Oil Industry. – 2016. – Vol. 5, Issue 4. – P. 68-70.

Мадалиев М.Э. и др. Численное Исследование Модифицированного Центробежного Циклона // Central Asian Journal Of Mathematical Theory And Computer Sciences. –2022.– Vol. 3, Issue 4. – С. 123-132.

Downloads

Published

2024-07-19

Issue

Section

Статьи