Numerical Solution of Plane-Radial Boundary Value Inverse Problem for the Equation of Non-Stationary Relaxation Filtration of Fluid in a Porous Medium
DOI:
https://doi.org/10.71310/pcam.6_70.2025.09Keywords:
boundary value inverse problem, approximation, regularization, solution stability, smoothing splinesAbstract
The paper addresses a numerical solution of a plane–radial boundary inverse problem for the relaxation filtration equation describing fluid flow in an elastically deformable porous medium. The study is motivated by the widespread occurrence of relaxation filtration in hydrogeology, oil and gas production, and subsurface hydromechanics, where reliable identification of medium parameters and reconstruction of unknown boundary actions are essential. Such boundary inverse problems are ill-posed: small perturbations in the input data may cause large deviations in the recovered solution, which makes stable and accurate numerical techniques crucial. The inverse problem is solved using De Souza’s marching method; however, computational experiments show that its accuracy strongly depends on the distance between the measurement point providing the “initial data” and the target boundary. As this distance increases, the error grows due to error accumulation and the intrinsic instability of boundary reconstruction. To improve stability and reduce errors, smoothing splines are employed. The spline approximation effectively suppresses high-frequency noise and stabilizes the recovery of boundary values. As a result, more stable numerical solutions with acceptable accuracy are obtained even under substantial data errors, demonstrating the promise of combining marching methods with smoothing procedures for ill-posed boundary inverse problems of relaxation filtration.
References
Alishayev M. O nestatsionarnoy fil'tratsii s relaksatsiyey davleniya // Gidromekhanika. 1974. – Vyp. 111. – C. 166-177.
Alishayev M., Mirzadzhanzade A. K uchetu yavleniy zapazdyvaniya v teorii fil'tratsii // Neft' i gaz. – 1975. – №6. – C. 71-74.
Molokovich YU., Neprimerov N., Pikuza V., Shtanin A. Relaksatsionnaya fil'tratsiya. – Kazan': Izdatel'stvo Kazanskogo universiteta, 1980. – 136 s.
Molokovich YU. Neravnovesnaya fil'tratsiya i yeye primeneniye v neftepromyslovoy praktike. – Regulyarnaya i khaoticheskaya dinamika, 2006. – 214 s.
Ametov I., Baydikov YU., Ruzin L., Spiridonov YU. Dobycha tyazhelykh i vysokovyazkikh zhidkostey. – M.: Nedra, 1985. – 205 s.
Dinariyev O., Nikolayev O. O relaksatsionnykh protsessakh v nizkopronitsayemykh poristykh materialakh // Inzhenerno-fizicheskiy zhurnal. – 1990. – Vol. 58, Issue 1. – C. 78-82.
Caputo M. Models of flux in porous media with memory // Water Resources Research. – 2000. – Vol. 36, Issue 3. – P. 693-705.
Khuzhayorov B., Djiyanov T., Zokirov M. Generalized relaxation fractional differential model of fluid filtration in a porous medium // International Journal of Applied Mathematics. – 2024. – Vol. 37, Issue 1. – P. 119-132. doi: http://dx.doi.org/10.12732/ijam.v37i1.10.
Kholiyarov E., Turaev D., Buriev J. Numerical solution of boundary inverse problem for fluid relaxation filtration in porous media // AIP Conference Proceedings. – 2024. – Vol. 3244, Issue 1. doi: http://dx.doi.org/10.1063/5.0241626.
Kholiyarov E., Turayev D., Buriyev ZH. Chislennoye resheniye granichnoy obratnoy zadachi dlya uravneniya relaksatsionnoy fil'tratsii // Problemy vychislitel'noy i prikladnoy matematiki. – 2024. – №3(57). – C. 36-46.
Kholiyarov E., Turayev D. Chislennoye resheniye ploskoradial'noy granichnoy obratnoy zadachi dlya uravneniya relaksatsionnoy fil'tratsii // Problemy mekhaniki. – 2024. – №4. – C. 101-109.
Kholiyarov E., Turayev D. Chislennoye resheniye granichnoy obratnoy zadachi dlya uravneniya nestatsionarnoy relaksatsionnoy fil'tratsii zhidkosti // Nauchnyy vestnik. – 2024. – №5/1(147). – C. 195-203.
Vabishchevich P., Vasil'yev V., Vasil'yeva M., Nikiforov D. Chislennoye resheniye odnoy obratnoy zadachi fil'tratsii // Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki. – 2015. – Vol. 157, Issue 4. – C. 79-89.
Alifanov O., Mikhaylov V. Resheniye nelineynoy obratnoy zadachi teploprovodnosti iteratsionnym metodom // Inzhenerno-fizicheskiy zhurnal. – 1978. – №6. – C. 1123-1129.
Samarskiy A. Teoriya raznostnykh skhem. – M.: Nauka, 1989. – 616 s.
Beck J., Blackwell B., Clair C. Inverse Heat Conduction: Ill-Posed Problems. – A Wiley-Interscience Publication, 1985. – 312 p.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 D.Sh. Turaev

This work is licensed under a Creative Commons Attribution 4.0 International License.