Modeling the Spatio-Temporal Dynamics of a Reservoir Area (using the Kattakurgan Reservoir as an example) based on NDWI, NDVI, EVI Indices and Ensemble Learning Methods
DOI:
https://doi.org/10.71310/pcam.6_70.2025.05Keywords:
modeling, reservoir area forecast, indices, machine learning methods, spatiotemporal dynamicsAbstract
The paper models the spatiotemporal dynamics of the Kattakurgan Reservoir area using satellite-based water and vegetation indices combined with ensemble machinelearning methods. Multi-year time series of NDWI, NDVI, and EVI are used together with meteorological variables (air temperature, humidity, precipitation) from the ERA5 and CHIRPS datasets on the Google Earth Engine platform for 2018–2023. The reservoir water-surface area, derived from satellite imagery, serves as the target variable for training and validating a Random Forest model. The study includes a train–test split, hyperparameter tuning, and performance evaluation using R2, RMSE, and MAE. The results indicate high accuracy: R2 = 0.962 for NDWI prediction, and values close to 1 for reservoir area, with RMSE about 5–7 km2 and MAE 3–5 km2. Forecasts of NDWI and reservoir area for 2024 are produced to assess expected changes in water extent and support water-management decisions and climate adaptation planning.
References
Yousefi E., Sayadi M.H., Chamanehpour E. Google Earth Engine platform to calculate the hydrometeorology and hydrological water balance of wetlands in arid areas and predict future changes // Journal of Applied Research in Water and Wastewater. – 2022. – Vol. 9, Issue 1. – P. 52-68.
Conde¸ca J.V., Nascimento J.P., Barreiras N. Monitoring the storage volume of water reservoirs using Google Earth Engine // Water Resources Research. – 2022. – Vol. 58. – Art. e2021WR030026. – doi: http://dx.doi.org/10.1029/2021WR030026.
Yue L., Li B., Zhu S., Yuan Q., Shen H. A fully automatic and high-accuracy surface water mapping framework on Google Earth Engine using Landsat time-series // International Journal of Digital Earth. – 2023. – Vol. 16, Issue 1. – P. 210-233. – doi: http://dx.doi.org/10.1080/17538947.2023.2166606.
Anand V., Oinam B., Wieprecht S. Machine learning approach for water quality predictions based on multispectral satellite imageries // Ecological Informatics. – 2024. – Vol. 84. – Art. 102868. – doi: http://dx.doi.org/10.1016/j.ecoinf.2024.102868.
McFeeters S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features // International Journal of Remote Sensing. – 1996. – Vol. 17, Issue 7. – P. 1425-1432.
Khamdamov R., Rakhmanov K., Fattaeva D. Algorithm for calculating vegetation indices NDVI for time series of Landsat 8 multispectral satellite images on Google Earth Engine platform // Proc. International Conference on Information Science and Communications Technologies (ICISCT). – 2021. – P. 1-3. – doi: http://dx.doi.org/10.1109/ICISCT52966.2021.9670365.
Hamdamov R., Rakhmanov H. Remote monitoring of agricultural land using multispectralsatellite imagery Sentinel-2 by contour analysis // Journal of Physics: Conference Series. – 2019. – Vol. 1260. – Art. 102005.
Khamdamov R., Saliev E., Rakhmanov K. Classification of crops by multispectral satellite images of Sentinel-2 based on the analysis of vegetation signatures // Journal of Physics: Conference Series. – 2020. – Vol. 1441. – Art. 012143. – doi: http://dx.doi.org/10.1088/1742-6596/1441/1/012143.
Gorelick N., Hancher M., Dixon M. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone // Remote Sensing of Environment. – 2017. – Vol. 202. – P. 18-27. – doi: http://dx.doi.org/10.1016/j.rse.2017.06.031.
Feyisa G.L., Meilby H., Fensholt R., Proud S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery // Remote Sensing of Environment. – 2014. – Vol. 140. – P. 23-35. – doi: http://dx.doi.org/10.1016/j.rse.2013.08.029.
Pekel J.-F., Cottam A., Gorelick N., Belward A.S. High-resolution mapping of global surface water and its long-term changes // Nature. – 2016. – Vol. 540, Issue 7633. – P. 418-422. – doi: http://dx.doi.org/10.1038/nature20584.
DeVries B., Huang C., Lang M.W. et al. Automated quantification of surface water inundation in wetlands using optical satellite imagery // Remote Sensing. – 2017. – Vol. 9, Issue 8. – Art. 807. – doi: http://dx.doi.org/10.3390/rs9080807.
Wang C., Jia M., Chen N., Wang W. Long-term surface water dynamics analysis based on Landsat imagery and the Google Earth Engine platform: A case study in the Middle Yangtze River Basin // Remote Sensing. – 2018. – Vol. 10, Issue 10. – Art. 1635. – doi: http://dx.doi.org/10.3390/rs10101635.
Tesfaye M., Breuer L. Performance of water indices for large-scale water resources monitoring using Sentinel-2 data in Ethiopia // Environmental Monitoring and Assessment. – 2024. – Vol. 196, Issue 5. – Art. 467. – doi: http://dx.doi.org/10.1007/s10661-024-12630-1.
Miura Y., Shamsudduha M., Suppasri A., Sano D. A global multi-sensor dataset of surface water indices from Landsat-8 and Sentinel-2 satellite measurements // Scientific Data. – 2025. – Vol. 12, Issue 1. – Art. 1253. – doi: http://dx.doi.org/10.1038/s41597-025-05562-z.
Cai Y., Shi Q., Liu X. Spatiotemporal mapping of surface water using Landsat images and spectral mixture analysis on Google Earth Engine // Journal of Remote Sensing. – 2024. – Vol. 4, Issue 2. – Art. 0117. – doi: http://dx.doi.org/10.34133/remotesensing.0117.
Wang Y., Li Z., Zeng C. et al. Dynamic surface water fraction (DSWF): Global surface water fraction mapping at 10-meter spatial resolution with Sentinel-2 imagery in Google Earth Engine // International Journal of Applied Earth Observation and Geoinformation. – 2025. – Vol. 143. – Art. 104813. – doi: http://dx.doi.org/10.1016/j.jag.2024.104813.
Islam K.I., Elias E., Carroll K.C., Brown C. Exploring Random Forest machine learning and remote sensing data for streamflow prediction: An alternative approach to a processbased hydrologic modeling in a snowmelt-driven watershed // Remote Sensing. – 2023. – Vol. 15, Issue 16. – Art. 3999. – doi: http://dx.doi.org/10.3390/rs15163999.
Jin H., Fang S., Chen C. Mapping of the spatial scope and water quality of surface water based on the Google Earth Engine cloud platform and Landsat time series // Remote Sensing. – 2023. – Vol. 15, Issue 20. – Art. 4986. – doi: http://dx.doi.org/10.3390/rs15204986.
Santecchia V., Bovenga F., Refice A., Nutricato R., Lovergine F.P., Nitti D.O. Assessment of Landsat-8 and Sentinel-2 water indices for surface water extent monitoring in a Mediterranean reservoir // Journal of Imaging. – 2023. – Vol. 9, Issue 5. – Art. 99. – doi: http://dx.doi.org/10.3390/jimaging9050099.
Wang Y., Li Z., Zeng C. et al. An urban water extraction method combining deep learning and Google Earth Engine // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. – 2020. – Vol. 13. – P. 769-782. – doi: http://dx.doi.org/10.1109/JSTARS.2020.2971783.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 N. Ravshanov

This work is licensed under a Creative Commons Attribution 4.0 International License.