Algebraic-Trigonometric Optimal Formulas for Numerical Integration

Authors

  • A.R. Hayotov V.I.Romanovskiy Institute of Mathematics, AS RUz Author
  • T.O. Khaitov Tashkent State Technical University Author

DOI:

https://doi.org/10.71310/pcam.5_69.2025.08

Keywords:

quadrature formula, definite integral, nodal points, optimality

Abstract

In this article, we present a detailed study on the determination of the coefficients of a quadrature formula that involves derivatives, making use of the so-called the phi – function method. This method provides a systematic framework for constructing optimal quadrature formulas in the context of approximate integration. In particular, the phi  – function approach not only simplifies the process of finding the required coefficients, but also ensures that the resulting formulas achieve a high degree of accuracy. Furthermore, the functional error associated with the constructed quadrature formula is carefully analyzed. The error analysis is supported by precise mathematical expressions, which confirm the reliability and effectiveness of the derived formula. By considering quadrature formulas with arbitrarily fixed nodes, the optimality conditions are rigorously examined, and the procedure for determining the corresponding components and coefficients is described in detail. As a key outcome of this investigation, explicit analytical expressions for the coefficients of the optimal quadrature formula are successfully obtained. Of particular interest is the case of equally spaced nodes, for which the derived quadrature formula naturally reduces to a classical Euler-Maclaurin type formula, demonstrating both the generality and the practical significance of the phi  – function method.

References

Boltaev N.D., Hayotov A.R., Shadimetov Kh.M. Construction of optimal quadrature formula for numerical calculation of Fourier coefficients in Sobolev space L(1)2 // American Journal of Numerical Analysis. – 2016. – Vol. 4, No. 1. – P. 1-7. – doi: http://dx.doi.org/10.12691/ajna-4-1-1.

Catinaş T., Coman Gh. Optimal quadrature formulas based on the ????-function method // Stud. Univ. Babeş-Bolyai Math.. – 2006. – Vol. 51, No. 1. – P. 49-64.

Coman Gh. Formule de cuadratura de tip Sard // Stud. Univ. Babeş-Bolyai Math. Mech.. – 1972. – Vol. 17, No. 2. – P. 73-77.

Ahlberg J.H., Nilson E.N., Walsh J.L. The theory of splines and their applications. – New York: Academic Press, 1967.

Hayotov A.R. Construction of Interpolation Splines Minimizing the Semi-norm in the Space K2(Pm) // Journal of Siberian Federal University. Mathematics & Physics. – 2018. – Vol. 11, No. 3. – P. 383-396.

Hayotov A.R., Babayev S.S., Abduakhadov A.A., Davronov J.R. An optimal quadrature formula exact to the exponential function by the ????-function method // Stud. Univ. Babeş-Bolyai Math.. – 2024. – Vol. 69, No. 3. – P. 651-663. – doi: http://dx.doi.org/10.24193/subbmath.2024.3.11.

Hayotov A.R., Kuldoshev H.M. An optimal quadrature formula with sigma parameter // Problems of Computational and Applied Mathematics. – 2023. – Vol. 48, No. 2/1. – P. 7-19.

Hayotov A.R., Babaev S.S. Optimal quadrature formula for numerical integration of fractional integrals in a Hilbert space // Journal of Mathematical Sciences (Springer). – 2023. – Vol. 277, No. 3. – P. 403-419. – doi: http://dx.doi.org/10.1007/s10958-023-06844-w.

Hayotov A.R., Babaev S.S. Optimal quadrature formulas for computing of Fourier integrals in W2(m,m−2)2 space // AIP Conference Proceedings. – 2021. – Vol. 2365. – 020021.

Hayotov A.R., Jeon S., Lee C.-O. On an optimal quadrature formula for approximation of Fourier integrals in the space L(1)2 // J. Comput. Appl. Math.. – 2020. – Vol. 372. – 112713.

Hayotov A.R., Jeon S., Shadimetov Kh.M. Application of optimal quadrature formulas for reconstruction of CT images // J. Comput. Appl. Math.. – 2021. – Vol. 388. – 113313.

Hayotov A.R., Rasulov R.G. The order of convergence of an optimal quadrature formula with derivative in the space W(1,0)2 // Filomat. – 2020. – Vol. 34, No. 11. – P. 3835-3844.

Lanzara F. On optimal quadrature formulae // J. Inequal. Appl.. – 2000. – No. 5. – P. 201-225.

Nikolsky S.M. On the issue of estimates of approximations by quadrature formulas // Advances in Math. Sciences. – 1950. – Vol. 5, No. 3. – P. 165-177.

Nikolsky S.M. Quadrature Formulas. – 4th ed. – Moscow: Nauka, 1988.

Shadimetov Kh.M., Hayotov A.R. Optimal approximation of the error functionals of quadrature and interpolation formulas in spaces of differentiable functions. – Tashkent: Muhr Press, 2022.

Chizzetti A., Ossicini A. Quadrature Formulae. – Berlin: Academie Verlag, 1970.

Downloads

Published

2025-11-16

Issue

Section

Статьи