Algorithm for Solving a Two-Level Game Problem of Dynamic System Trajectory Transfer

Authors

  • A.R. Mamatov Samarkand state university Author

DOI:

https://doi.org/10.71310/pcam.5_69.2025.05

Keywords:

dynamic system, game problem, support, algorithm

Abstract

The game problem of transferring the trajectory of a dynamic system controlled by two players whose goals are opposite, from any point of a given set to a terminal set is considered. The given set is described by the control parameter of the first player. The first player chooses his control first, then, knowing the first player’s control, the second player chooses his control. The goal of the first player is to choose a control to prevent the trajectory of the dynamic system from entering the terminal set under any control of the second player, and the goal of the second player is to choose a control to transfer the trajectory of the dynamic system to the terminal set under any control of the first player. If the second player manages to transfer the system trajectory to the terminal set, then the additional goal of the first player is to maximize the minimum functional for the second player’s control, and the additional goal of the second player is to minimize the linear functional. An algorithm for solving the problem under consideration has been developed and substantiated. An illustrative example is given.

References

Gabasov R., Kirillova F.M. Optimizatsiya lineynykh sistem. – Minsk: Izd. BGU, 1973. – 248 s.

Pontryagin L.S. Lineynyye differentsial'nyye igry presledovaniya // Matem. sb.. – 1980. – T. 112, №3. – S. 307-330.

Satimov N. K zadache presledovaniya v lineynykh differentsial'nykh igrakh // Differents. uravneniya. – 1973. – T. 9, №11. – S. 2000-2009.

Azamov A. Dvoystvennost' lineynykh differentsial'nykh igr presledovaniya // Dokl. AN SSSR. – 1982. – T. 263, №4. – S. 777-780.

Gnevko S.V., Israilov I.I. Postroyeniye optimal'nogo garantiruyushchego upravleniya v lineynoy differentsial'noy igre // Aktual'nyye zadachi teorii dinamicheskikh sistem upravleniya. – Mn.: Nauka i tekhnika, 1989. – S. 203-212.

Satimov N.YU. Metody resheniya zadachi presledovaniya v teorii differentsial'nykh igr. – Tashkent: Natsional'naya biblioteka Uzbekistana imeni A. Navoi, 2019. – 230 s.

Ibragimov G., Ferrara M., Ruziboev M. et al. Linear evasion differential game of one evader and several pursuers with integral constraints // Int J Game Theory. – 2021. – Vol. 50. – P. 729-750. – doi: http://dx.doi.org/10.1007/s00182-021-00760-6.

Gabasov R., Daukshas V.Z., Kirillova F.M. Dvoystvennyy tochnyy metod resheniya lineynoy zadachi terminal'nogo upravleniya // Avtomatika i telemekhanika. – 1984. – №1. – S. 48-57.

Gabasov R., Kirillova F.M. Metody lineynogo programmirovaniya. CH. I—III. – Mn.: Izd. BGU, 1977-1980. – 176 s., 238 s., 368 s.

Gabasov R., Kirillova F.M., Tyatyushkin A.I. Konstruktivnyye metody optimizatsii. CH. 1-2. – Minsk: Universitetskoye, 1984. – 214 s., 207 s.

Ivanilov YU.P. Dvoystvennyye poluigry // Izvestiya AN SSSR. Seriya tekhnicheskaya kibernetika. – 1972. – №4. – S. 3-9.

Fedorov V.V. Chislennyye metody maksimina. – M.: Nauka, 1979. – 280 s.

Azizov I. Algoritm vychisleniya e-optimal'nogo resheniya lineynoy maksiminnoy zadachi so svyazannymi peremennymi // Vestsi AN BSSR. Ser. fiz.-mat. navuk. – 1986. – №1. – S. 14-18.

Mamatov A.R. Algoritm resheniya odnoy igry dvukh lits s peredachey informatsii // Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki. – 2006. – T. 46, №10. – S. 1784-1789. – doi: http://dx.doi.org/10.1134/S0965542506100071.

Mamatov A.R. Algoritm resheniya odnoy igrovoy zadachi so svyazannymi peremennymi // Problemy vychislitel'noy i prikladnoy matematiki. – 2023. – №2(47). – S. 150-159.

Mamatov A.R. Algorithm for Solving the Problem of the First Phase in a Game Problem with Arbitrary Situations // Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika. – 2024. – T. 48. – S. 3-20. – doi: http://dx.doi.org/10.26516/1997-7670.2024.48.3.

Mamatov A.R. Poisk lokal'no-optimal'nykh strategiy v lineynoy igrovoy zadache s blagopriyatnymi situatsiyami // Diskretnyy analiz i issledovaniye operatsiy. – 2024. – T. 31, №3. – S. 123-143.

Mamatov A.R. Algorithm for solving the maximin evasion-approach problem // AIP Conference Proceedings. – 2024. – Vol. 3244. – 020027. – doi: http://dx.doi.org/10.1063/5.0241514.

Mamatov A.R. O reshenii lineynoy maksiminnoy zadachi upravleniya s podvizhnymi krayevymi usloviyami // Uzbekskiy matematicheskiy zhurnal. – 2017. – №4. – S. 83-93.

Gabasov R., Kirillova F.M. Upravleniye dinamicheskim ob"yektom v real'nom vremeni v usloviyakh postoyanno deystvuyushchikh vozmushcheniy // Dokl. Nats. akad. nauk Belarusi. – 2017. – T. 61, №6. – S. 7-13.

Kostyukevich D.A., Dmitruk N.M. Metod postroyeniya optimal'noy strategii upravleniya v lineynoy terminal'noy zadache // Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika. – 2021. – №2. – S. 38-50. – doi: http://dx.doi.org/10.33581/2520-6508-2021-2-38-50.

Dmitruk N.M. Mnogokratno zamykayemaya strategiya upravleniya v lineynoy terminal'noy zadache optimal'nogo garantirovannogo upravleniya // Tr. IMM UrO RAN. – 2022. – T. 28, №3. – S. 66-82. – doi: http://dx.doi.org/10.33581/2520-6508-2021-2-38-50.

Mamatov A.R. Algoritm resheniya odnoy igry dvukh lits // Znanstvena misel journal. – 2023. – №83. – S. 60-62. – doi: http://dx.doi.org/10.5281/zenodo.10032736.

Lipskiy V. Kombinatorika dlya programmistov. – M.: Mir, 1988. – 200 s.

Downloads

Published

2025-11-16

Issue

Section

Статьи