Mathematical Modeling of Pollutant Dispersion in Turbulent Airflows of the Atmospheric Boundary Layer
DOI:
https://doi.org/10.71310/pcam.5_69.2025.02Keywords:
atmospheric modeling, turbulent diffusion, finite-difference approximation, velocity and pressure field, environmental forecastingAbstract
The paper presents a mathematical model of pollutant dispersion in turbulent airflows within the atmospheric boundary layer. The model is based on the advection–diffusion equation and the system of Navier–Stokes equations, complemented by the k-e turbulence model. In this formulation, the model provides an accurate description of the spatiotemporal dynamics of pollutant concentration. A point emission source is introduced through the Dirac delta function, which makes it possible to correctly represent localized pollutant releases. For the numerical solution of the problem, an algorithm based on a finite-difference scheme with directional (upwind) flux approximation and iterative pressure correction using the conjugate gradient method is proposed. Boundary and initial conditions are formulated for the near-surface atmospheric layer, taking into account the spatial inhomogeneity of the wind field and the vertical gradient of turbulent energy. The developed model ensures a stable solution and can be applied to analyze pollutant dispersion dynamics, forecast air quality, and optimize urban ventilation systems under various meteorological conditions.
References
Brunekreef B., Holgate S.T. Air pollution and health // Lancet. – 2002. – P. 1233-1242.
Maynard R. Key airborne pollutants—the impact on health // Sci. Total Environ. – 2004. – Vol. 334. – P. 9-13.
Global IGBP change: urban air pollution – a new look at an old problem // http://www.igbp.net/news/features/urbanairpollutionanewlookatanoldproblem.5.19895cff13e9f675e253f0.html
Health effects // https://www.airqualitynow.eu/pollution_health_effects.php
Sangeetha A., Amudha T. A study on estimation of CO2 emission using computational
techniques // 2016 IEEE International Conference on Advances in Computer Applications (ICACA). – 2016. – P. 244-249.
Kongritti N. Power-based motor-vehicle model emission of air pollutants from Chalongrat expressway compared to road ground level by using power-based motor-vehicle model // Asia-Pac. J. Sci. Technol. – 2014. – Vol. 19, No. 5. – P. 645-655.
Is CO2 a pollutant? // https://skepticalscience.com/co2-pollutant-advanced.html
The effects of carbon dioxide on air pollution // https://sciening.com/list-5921485-effects-carbon-dioxide-air-pollution.html
The criteria air pollutants // https://en.wikipedia.org/wiki/Critetia_air_pollutants
Air pollution // https://www.nationalgeographic.com/environment/global-warming/pollution
Abhijith K.V., Kumar P., Gallagher J., McNabola A., Baldauf R., Pilla F., Broderick B., Sabatino S.D., Pulvirenti B. Air pollution abatement performances of green infrastructure in open-road and built-up street canyon environments—a review // Atmosphere. Environ. – 2017. – Vol. 162. – P. 71-86.
Janhдll S. Review on urban vegetation and particle air pollution-deposition and dispersion // Atmosphere. Environ. – 2015. – Vol. 105. – P. 130-137.
Rahman I.A., Putra J.C.P., Asmi A. Modeling of particle transmission in laminar flow using COMSOL Multiphysics // ARPN J. Eng. Appl. Sci.. – 2006. – Vol. 11. – P. 6630-6637.
Christodemou E., Boganegra L.M., Mottet L., Pavlidis D., Constantinou A., Pain C., Robins A., ApSimon H. How tall buildings affect turbulent air flows and dispersion of pollution within a neighborhood // Environ. Pollut.. – 2018. – Vol. 233. – P. 782-796.
Baik J.J., Kim J.J. A numerical study of flow and pollutant dispersion characteristics in urban street canyons // J. Appl. Meteorol.. – 1999. – Vol. 38, No. 11. – P. 1576-1589.
Chan T., Dong G., Leung C., Cheung C., Hung W. Validation of a two-dimensional pollutant dispersion model in an isolated street canyon // Atmosphere. Environ.. – 2002. – Vol. 36, No. 5. – P. 861-872.
Chang C.H., Lin J.S., Cheng C.M., Hong Y.S. Numerical simulations and wind tunnel studies of pollutant dispersion in the urban street canyons with different height arrangement // J. Mar. Sci. Technol.. – 2013. – Vol. 21, No. 2. – P. 119-126.
Huang H., Akutsu Y., Arai M., Tamura M. A two-dimensional air quality model in an urban street canyon // Atmosphere. Environ.. – 2000. – Vol. 34, No. 5. – P. 689-698.
Ibrahim A., Altinisik K., Keskin A. The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems // Clean Technol. Environ. Policy. – 2015. – Vol. 17, No. 1. – P. 15-27.
Kim J.J., Baik J.J. A numerical study of thermal effects on flow and pollutant dispersion in urban street canyons // J. Appl. Meteorol.. – 1999. – Vol. 38, No. 9. – P. 1249-1261.
Li L., Yang L., Zhang L.J., Jiang Y. Numerical study on the impact of ground heating and ambient wind speed on flow fields in street canyons // Adv. Atmosphere. Sci.. – 2012. – Vol. 29, No. 6. – P. 1227-1237.
Mei S.J., Liu C.W., Liu D., Zhao F.Y., Wang H.Q., Li X.H. Fluid mechanical dispersion of airborne pollutants inside urban street canyons subject to multi-component ventilation and unstable thermal stratifications // Sci. Total Environ.. – 2016. – Vol. 565. – P. 1102-1115.
Miao Y., Liu S., Zheng Y., Wang S., Li Y. Numerical study of traffic pollutant dispersion within different street canyon configurations // Adv. Meteorol.. – 2014. – Article ID 458671.
Oijinda P., Pocha N. Numerical simulation to air pollution emission control near an industrial zone // Adv. Math. Phys.. – 2017. – Article ID 5287132.
Liu W. Numerical models for vehicle exhaust dispersion in complex urban areas // Int. J. Numer. Methods Fluids. – 2011. – Vol. 67. – P. 787-804.
Madalozzo D.M.S., Braun A.L., Awruch A.M., Morsch I.B. Numerical simulation of pollutant dispersion in street canyons: geometric and thermal effects // Appl. Math. Model.. – 2014. – Vol. 38, No. 24. – P. 5883-5909.
Suebyat K., Pochai N. Numerical simulation for a three-dimensional air pollution measurement model in a heavy traffic area under the Bangkok Skytrain platform // Abstr. Appl. Anal.. – 2018. – Article ID 9025851.
Ravshanov N., Sharipov D.K., Akhmedov D. Modelirovaniya protsessa zagryazneniya okrujayushchey sredy s uchetom relief mestnosti kheleto - klimaticeskikh faktorov // Informatsionnye tekhnologii modelirovaniya i upravleniya. – 2015. – No. 3. – P. 222-235.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 B.I. Boborakhimov

This work is licensed under a Creative Commons Attribution 4.0 International License.