Relationship in Metric Classification Algorithms and Analysis of its Properties
DOI:
https://doi.org/10.71310/pcam.4_68.2025.06Keywords:
connectivity relation, compactness measures, Dijkstra algorithm, metric algorithmsAbstract
The relationship between class objects is considered for analyzing the cluster structure of the training dataset. The uniqueness of the solution to the problem of minimal coverage of the training set by prototypes is discussed. Interest in the uniqueness issue is associated with the use of either a base metric as a distance measure for all objects or local metrics derived from the base one. The specific structure of object relationships is reflected in the non-spherical shape of the cluster configurations. For such clusters, no established quality assessments exist. The property of connectivity is explored and its application as a source of new knowledge during the construction of information models in specific subject areas is studied. The connectivity property is proposed to be evaluated through the search for the most distant cluster objects using Dijkstra’s algorithm. The input data is an adjacency matrix constructed based on the intersection information of hyperspheres centered at the cluster objects. The radii of these hyperspheres are defined as the distances to the nearest objects of the opposite classes. Examples of quantitative characteristics of clusters and their possible areas of application are provided. One such characteristic is the cluster curvature coefficient.
References
Ignatyev N.A. Structure Choice for Relations between Objects in Metric Classification Algorithms // Pattern Recognition and Image Analysis, – 2028. – Vol. 28. – №4. – P. 590–597.
Zagoruyko N.G., Kutnenko O.A. Tsenzurirovaniye obuchayushchey vyborki // Vestnik Tomskogo gosudarstvennogo universiteta. Upravleniye, vychislitel'naya tekhnika i informatika, – 2013. – № 1(22). – S. 66–73.
Ignat'yev N.A., Tursunmurotov D.KH. Tsenzurirovaniye obuchayushchikh vyborok s ispol'zovaniyem regulyarizatsii otnosheniy svyazannosti ob"yektov klassov // Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki, – 2024. – T. 24. – №2. – S. 322–329. doi: http://dx.doi.org/10.17586/2226-1494-2024-24-2-322-329.
Ignat'yev N.A., Zgural'skaya Ye.N. Klasternyy analiz s primeneniyem obucheniya na osnove otnosheniy svyazannosti i plotnosti raspredeleniya // Vestnik Tomskogo gosudarstvennogo universiteta. Upravleniye, vychislitel'naya tekhnika i informatika, – 2024. – №68. – S. 66–74. doi: http://dx.doi.org/10.17223/19988605/68/7
Zhu Y, Ting KM. Carman MJ Density-ratio based clustering for discovering clusters with varying densities // Pattern, – 2016. – V 60. – P. 983–997.
Aydagulov R.R., Glavatskiy S.T., Mikhalov A.V. Metody osredneniya v zadachakh klasterizatsii bol'shikh dannykh // Intellektual'nyye sistemy. Teoriya i prilozheniya. – 2021. – №25(4). – S. 12–18.
Sivogolovko Ye.V. Metody otsenki kachestva chotkoy klasterizatsii // Komp'yuternyye instrumenty v obrazovanii. – 2011. – №4. S. 14–31.
Hastie., Tibshirani R., Friedman J. The Elements of Statistical Learning:Data Mining,Infrence and Prediction Second Edition (Springer Series in Statistics) . Springer – 2009. – 767 p.
Rudakov K.V. O nekotorykh faktorizatsiyakh polumetricheskikh konusov i otsenkakh kachestva evristicheskikh metrik v zadachakh analiza dannykh // Doklady Rossiyskoy Akademii nauk. Matematika, Informatika, Protsessy Upravleniya. – 2020. – S. 101–103.
Zukhba A.V. Otsenka vychislitel'noy slozhnosti zadach otbora etalonnykh ob"yektov i priznakov // dissertatsiya kandidata nauk [Elektronnyy resurs]. Rezhim dostupa: https://istina.ips.ac.ru/dissertations/ (data obrashcheniya: 28.02.2025).
https://archive.ics.uci.edu/dataset/94/spambase, svobodnyy. YAz. angl. (data obrashcheniya: 23.06.2025).
Kobrinskiy B.A. Doveriye k tekhnologiyam iskusstvennogo intellekta // Iskusstvennyy intellekt i prinyatiye resheniy. – 2024. – №3. – S. 3–17.
Bozhenyuk A.V., Belyakov S.L., Kosenko O.V. Otsenka informatsionnoy nadezhnosti slozhnykh sistem s pomoshch'yu intuitsionistskikh nechetkikh grafov // Nauka i tekhnologiya zheleznykh dorog. – 2019. – T.3. – №4(12). – S. 65–74.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 N.A. Igntiev

This work is licensed under a Creative Commons Attribution 4.0 International License.