MATHEMATICAL MODELING OF THE PROCESS OF UNDERGROUND LEACHING TAKEN INTO ACCOUNT OF CHANGES IN THE HYDRODYNAMIC PARAMETERS OF THE POROUS MEDIUM
Keywords:
in-ground leaching, mathematical modeling, minerals, filtration, diffusion, kinetics, useful componentAbstract
The paper examines the hydrodynamic process of in-situ leaching, used for the ex traction of expensive metals from ore deposits by acid treatment of the collector. For a comprehensive study, monitoring and forecasting of the object, a mathematical model has been developed based on the filtration-convective and diffusion process of underground leaching, taking into account changes in the main hydrodynamic parameters, filtration coefficient and porosity of the medium, which depend on the level of pressure and kinetics of the process, as well as the protection of groundwater from sources pollution, which is the main objective of the study. Since the problem posed is described by a system of mul tidimensional quasilinear partial differential equations, obtaining an analytical solution is a difficult task. To solve the problem, the methods of flow and ordinary sweep using conservative difference schemes are used. Next, the two-dimensional problem is reduced to the form of a chain of one-dimensional problems and computational experiments are carried out on a computing cluster; the calculation results are presented in the form of graphs.
References
Arens V.ZH. Skvazhinnaya dobycha poleznykh iskopayemykh.– M.: Nedra, 1986.– 277 s.
Grabobnikov V.A. Geotekhnologicheskiye issledovaniya pri razvedke metallov.– M.: Nedra, 1983.– 120 c.
Zakirov S.N. Teoriya i proyektirovaniye razrabotki gazovykh i gazokondensatnykh mestorozhdeniy.– M.: Nedra, 1989.– 334 s.
Bakhurov V.G., Rudneva I.K. Khimicheskaya dobycha poleznykh iskopayemykh.– M.: Nedra, 1972.– 136 s.
Alimov I. Matematicheskoye modelirovaniye gidrodinamicheskikh protsessov podzemnogo vyshchelachivaniya.– Tashkent: FAN, 1991.– 82 s.
Verigin N.N. i dr. Gidrodinamicheskiye i fiziko-khimicheskiye svoystva gornykh porod.– M.: Nedra, 1977.– 271 s.
Gal'tsev O.V. i dr. Matematicheskoye modelirovaniye protsessa podzemnogo vyshchelachivaniya na makroskopicheskom urovne // Nauchnyye vedomosti. Seriya: Matematika. Fizika.– 2018.– Tom 50, № 4.– C. 479-486.
Meirmanov A.M., Galtsev O.V., Zimin R.N. Free Boundaries in Rock Mechanics.– Berlin New York: Walter de Gruyter, 2017.– 229 p.
Golfier F. et al. On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium // J. Fluid Mech.– 2002.– Vol. 457.– P. 213-254.
Kalia N., Balakotaiah V. Effect of medium heterogeneities on reactive dissolution of carbonates // Chemical Engineering Science.– 2009.– Vol. 64.– P. 376-390.
Cohen C.E. et al. From pore scale to wellbore scale: impact of geometry on wormhole growth in carbonate acidization // Chemical Engineering Science.– 2008.– Vol. 63.– P. 3088-3099.
Panga M.K.R., Ziauddin M., Balakotaiah V. Two-scale continuum model for simulation of wormholes incarbonate acidization // A.I.Ch.E. Journal.– 2005.– Vol. 51.– P. 3231-3248.
Burridge R., Keller J.B. Poroelasticity equations derived from microstructure // Journal of Acoustic Society of America.– 1981.– Vol. 70.– P. 1140-1146.
Sanchez-Palencia E. Non-Homogeneous Media and Vibration Theory.– (Lecture Notes in Physics. Vol. 127.).– New York: Springer-Verlag, 1980.– 400 p.
Bunashev V.F., Kaytarov Z.D. Matematicheskoye modelirovaniye mnogofaznoy fil'tra tsii s uchetom deformatsii poristoy sredy // Uzbekskiy zhurnal Problemy vychisli tel'noy i prikladnoy matematiki.– 2022.– №3(41).– C. 5-20.
Ravshanov N., Alimova I.I. Chislennoye modelirovaniye protsessa fil'tratsii gaza v poristoy srede // Uzbekskiy zhurnal Problemy vychislitel'noy i prikladnoy matematiki.– 2018.– №1(13)– C. 48-55.
Samarskiy A.A. Teoriya raznostnykh skhem.– M.: Nauka, 1977.– 656 s.
Ravshanov N., Kurbonov N.M. Chislennoye modelirovaniye protsessa fil'tratsii gaza v poristoy srede // Informatsionnyye tekhnologii modelirovaniya i upravleniya.– 2016.– №1(97).– C. 34-45.
Kurbonov N.M., Saliev E.A. Computer experiment to study of filtration oil, gas and water in a porous medium // Problems of computational and applied mathematics.– 2016.– 1(3).– C. 13-22.
