Investigation of the Exponential Stability of the Numerical Solution of a Hyperbolic System with Negative Nonlocal Characteristic Velocities
DOI:
https://doi.org/10.71310/pcam.4_68.2025.05Keywords:
Hyperbolic equation, nonlocal characteristic velocity, stability, explicit difference schemeAbstract
In this work, the problem of stabilizing the equilibrium state for a hyperbolic equation with negative nonlocal characteristic velocity and measurement error is investigated. The formulation of the mixed control problem is presented. The weak solution, exponential stability of the equilibrium state of the mixed problem, and the definition of the Lyapunov function are given. The exponential stability of the equilibrium state of a mixed problem is given. The stability in the ????2 – norm is determined relative to the discrete perturbations of the equilibrium state of the initial-boundary difference problem. In a computational experiment, one hyperbolic equation with negative characteristic velocity was considered and its numerical solution was found using the constructed difference scheme. The graph of the norm ????2 of the numerical solution, demonstrating its stability, is shown.
References
Coron J.M., Wang Z. Output Feedback Stabilization for a Scalar Conservation Law with a Nonlocal Velocity. SIAM J. Math. Anal. – 2013. – Vol. 45. – P. 2646–2665. doi:10.1137/120902203.
Chen W., Liu C., Wang Z. Global Feedback Stabilization for a Class of Nonlocal Transport Equations: The Continuous and Discrete Case. SIAM J. Control Optim. – 2017. – Vol. 55. – P. 760–784. doi:10.1137/15m1048914.
Simone G‥ottlich, Michael Herty and Gediyon Weldegiyorgis. Input-to-State Stability of a Scalar Conservation Law with Nonlocal Velocity. Axioms – 2021. – 12 p. https://doi.org/10.3390/axioms10010012.
Aloyev R.D., Alimova V.B Issledovaniye eksponentsial'noy ustoychivosti chislennogo resheniya giperbolicheskogo uravneniya s otritsatel'noy nelokal'noy kharakteristicheskoy skorosti i pogreshnost'yu izmereniya// Problemy vychislitel'noy i prikladnoy matematiki. – №2(47) – 2023. – S. 108–125.
Aloyev R.D., Berdyshev A., Alimova V.B. Issledovaniye eksponentsial'noy ustoychivosti chislennogo resheniya giperbolicheskogo uravneniya s otritsatel'noy nelokal'noy kharakteristicheskoy skorosti i pogreshnost'yu izmereniya// Problemy vychislitel'noy i prikladnoy matematiki. – №1(55) – 2024. – S. 122–140
Aloev R., Berdyshev A., Bliyeva D., Dadabayev S., Baishemirov Z. Stability Analysis of an Upwind Difference Splitting Scheme for Two-Dimensional Saint–Venant Equations. Symmetry, 2022-09, journal-article DOI: 10.3390/sym14101986. Source: Multidisciplinary Digital Publishing Institute.
Aloev R.D., Dadabaev S.U. Stability of the upwind difference splitting scheme for symmetric t-hyperbolic systems with constant coefficients. Results in Applied Mathematics. 2022 | journal-article. DOI: 10.1016/j.rinam.2022.10029 8. EID: 2-s2.0-85131461551. Part of ISSN: 25900374. Source:Rakhmatillo Aloev via Scopus – Elsevier.
Aloev R.D., Hudayberganov M.U. A Discrete Analogue of the Lyapunov Function for Hyperbolic Systems. Journal of Mathematical Sciences (United States).2022, journalarticle. DOI: 10.1007/s10958-022-06028-y. EID: 2-s2.0-85135683283. Part of ISSN: 15738795 10723374. Source:Rakhmatillo Aloev via Scopus – Elsevier.
Aloev R.D., Eshkuvatov Z.K., Khudoyberganov M.U., Nematova D.E. The Difference Splitting Scheme for n-Dimensional Hyperbolic Systems. Malaysian Journal of Mathematical Sciences. 2022 | journal-article. EID: 2-s2.0-85130020938. Part of ISSN: 18238343. Source:Rakhmatillo Aloev via Scopus – Elsevier.
Aloev R., Berdyshev A., Akbarova A., Baishemirov Z. Development of an algorithm for calculating stable solutions of the saint-venant equation using an upwind implicit difference scheme. Eastern-European Journal of Enterprise Technologies 2021 | journalarticle. DOI: 10.15587/1729-4061.2021.239148. EID: 2-s2.0-85116525899. Part of ISSN: 17294061 17293774. Source:Rakhmatillo AloevviaScopus – Elsevier.
Aloev R.D., Eshkuvatov Z.K., Khudoyberganov M.U., Nematova D.E. The difference splitting scheme for hyperbolic systems with variable coefficients. Mathematics and Statistics 2019 | journal-article. DOI: 10.13189/ms.2019.070305. EID: 2-s2.0-85071017777. Source:Rakhmatillo AloevviaScopus – Elsevier.
Rakhmatillo A., Mirzoali K., Alexander B. Construction and research of adequate computational models for quasilinear hyperbolic systems. Numerical Algebra, Control and Optimization 2018 | journal-article. DOI: 10.3934/naco.2018017. EID: 2-s2.0-85056814686.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 R.D. Aloev

This work is licensed under a Creative Commons Attribution 4.0 International License.