Modeling the Process of Filtering a low-Concentration Solution through a Porous Medium
DOI:
https://doi.org/10.71310/pcam.4_68.2025.10Keywords:
mathematical model, cylindrical filter, Navier–Stokes equations, Darcy’s law, Poisson equation, advection–diffusion, hydrodynamicsAbstract
This article presents an integrated mathematical model of radial filtration in a cylindrical filter, in which the flow movement is carried out from the outer layer to the inner cavity. Free flow areas are described by Navier-Stokes equations for incompressible fluid, where the filtration process through the porous layer is formalized based on Darcy’s law, and the pressure distribution is determined by the Poisson equation. The transfer of dissolved substances is modeled using the advection-diffusion equation. The model includes a mechanism for the evolution of porosity over time (sealing or clogging), which allows tracking the conjugate dynamics of the "pressure-velocity-porosityconcentration" parameters. The analysis showed that considering the vertical orientation of the cylindrical filter is a significant factor influencing the reduction of energy costs and increasing the selectivity of the process.
References
Andrii Safonyk, Andrii Bomba Mathematical modeling process of liquid filtration taking into account reverse influence of process characteristics on medium characteristics // International journal of applied mathematical research. DOI:10.14419/ijamr.v4i1.3805–2014. – P. 1–7.Source: https://www.sciencepubco.com/index.php/ijamr/article/view/3805
Ali Q. Raeini, Martin J. Blunt, Branko Bijeljic Modelling two-phase flow in porous media at the pore scale using the volume-offluid method // Journal of Computational Physics.USA, – Vol. 231. – № 17. – 2012. – P. 5653–5668. DOI:10.1016/j.jcp.2012.04.011.
Benamar A., Correia dos Santos R.N., Bennabi A., Karoui T. Suffusion evaluation of coarse-graded soils from Rhine dikes. // Acta Geotechnica 14(3). – 2019. – P. 815–823.
Boyer F., Lapuerta C., Minjeaud S., Piar B., Quintard M. Cahn–Hilliard/Navier–Stokes Model for the Simulation of Three-Phase Flows // Transport in Porous Media. – 2010. – Vol. 82. – № 3. – P. 463–483. doi:10.1007/s11242-009-9408-z.
Carlos Andre V. Burkert, Geraldo N.O. Barbosa, Marcio A. Mazutti., Francisco Maugeri Mathematical modeling and experimental breakthrough curves of cephalosporin C adsorption in a fixed-bed column // Process Biochemistry. – 2011. – № 46. – P. 1270–1277.
Chetti, A., Benamar, A., Korichi, K. Three-dimensional numerical model of internal erosion // European Journal of Environmental and Civil Engineering. – 2019.
Rosenthal I., Anlauf H., Nirschl H. Experimental and analytical modeling of the filtration mechanisms of a paper stack candle filter. // Chemical Engineering Research and Design. – Vol. 89. – № 12. – 2011. – P. 2776–2784.
Gitisa V. et al. Deep-bed filtration model with multistage deposition kinetics // Chemical Engineering Journal. – № 163. -– 2010. – P. 78–85.
Makhmudov Zh.M., Saidullaev U.Zh. and Khuzhayorov B.Kh. Mathematical Model of Deep-Bed Filtration of a Two-Component Suspension through a Porous Medium // Fluid Dynamics, – Vol. 52. – № 2. – 2017. – P. 299–308.
Ravshanov N., Turakulov ZH.A. Pryamaya i obratnaya zadacha dlya issledovaniya protsessa fil'tratsii ionnykh rastvorov cherez poristuyu sredu // Problemy vychislitel'noy i prakticheskoy matematiki. – 2022. – № 5(43). – S. 58–71.
Silva C.M., Reeve D.W., Husain H., Rabie H.R., Woodhouse K.A. Model for flux prediction in high-shear MF systems // J. Membr. Sci. – 2000. – P. 87–98.
Abutaliyev F.B., Ravshanov N. Modelirovaniye tekhnologicheskogo protsessa separirovaniya trudnorazdelyayemykh smesey // Dokl. AN RUz. – 1997. – № 7. – S. 26–30.
Ravshanov N., Palvanov B., Mukhamadiyev A. Komp'yuternoye modelirovaniye protsessa fil'tratsii zhidkosti ionizirovannykh rastvorov dlya zashchity ekosistemy ot istochnikov zagryazneniya // Vestnik TUIT. – 2015. – №2(34). – S. 100–105.
Ravshanov N., Saidov U.M. Modelling technological process of ion-exchange filtration of fluids in porous media J. Phys.: Conf. Ser. 1015 032114. – 2018. DOI: 10.1088/1742-6596/1015/3/032114
Ravshanov N., Turakulov ZH. “Matematicheskoye modelirovaniye protsessa fil'trovaniya malokontsentrirovannykh rastvorov cherez poristuyu sredu” // Informatsionnyye tekhnologii modelirovaniya i upravleniya – 2024. – №3(137).
Downloads
Published
Issue
Section
License
Copyright (c) 2025 J. Turakulov

This work is licensed under a Creative Commons Attribution 4.0 International License.