Numerical Modeling of Thin Plate Bending using a Discrete Version of the Pre-Integration Method
DOI:
https://doi.org/10.71310/pcam.4_68.2025.04Keywords:
plate bending, load distribution, Chebyshev polynomials, discrete version of the preliminary integration method, high accuracy, efficiencyAbstract
Many applied problems are described by the Dirichlet problem for the Poisson equa tions. This problem is used in the following practical situations: membrane or plate deflection, electric potential, gravitational and magnetic potential, stationary tempera ture distribution (diffusion), and electron-optical systems. Although there are both direct and iterative methods for numerically solving the Poisson equation, the question of the effectiveness of using these methods remains relevant. In this work, the bending of a thin plate is studied using a discrete version of the method of preliminary integration over Chebyshev polynomials of the first kind. The proposed method is used to determine the bending of the plate. Numerical calculations are performed to demonstrate the depen dence of the bending of the plate on the distributed load, and the proposed method is shown to be highly accurate.
References
Jun Zhang Acceleration of five-point red-black Gauss-Seidel in multigrid for Poisson equation. Applied Mathematics and Computation.– 1996.– Vol. 80.– №1.– P. 73–93. https://doi.org/10.1016/0096-3003(95)00276-6.
Ovidiu Munteanu, Natasa Sesum The Poisson equation on complete manifolds with positive spectrum and applications. // Advances in Mathematics.– 2010.– Vol. 223.– №1.– P. 198–219. https://doi.org/10.1016/j.aim.2009.08.003.
Alexandra Koulouri, Ville Rimpil¨ainen, Mike Brookes, Jari P. Kaipio. Compensation of domain modelling errors in the inverse source problem of the Poisson equation: Application in electroencephalographic imaging // Applied Numerical Mathematics.– 2016.– P. 24–36. https://doi.org/10.1016/j.apnum.2016.01.005
Raphael Egan, Fr´ed´eric Gibou. Geometric discretization of the multidimensional Dirac delta distribution– Application to the Poisson equation with singular source terms. // Journal of Computational Physics– 2017.– Vol. 346.– P. 71–90. https://doi.org/10.1016/j.jcp.2017.06.003. [5] Ghasemi M. Spline-based DQM for multi-dimensional PDEs: Application to biharmonic and Poisson equations in 2D and 3D. // Computers and Mathematics with Applications. 2017.– Vol. 73.– P. 1576-1592. http://dx.doi.org/10.1016/j.camwa.2017.02.006.
Zhang, Chengzhao Analytic Solutions to the Laplace, Poisson, and Biharmonic Equations with Internal Boundaries: Theory and Application to Microfluidic Dynamics. // THES. 2021.– P. 1–142.
Nithin Kumar Goona, Saidi Reddy Parne Distributed source scheme for Poisson equation using finite element method. // Journal of Computational Science.– Vol. 72.– P. 1–10. https://doi.org/10.1016/j.jocs.2023.102103.
Paulo Sousa, Alexandre Afonso, Carlos Veiga Rodrigues Application of machine learning to model the pressure poisson equation for fluid flow on generic geometries. // Neural Computing and Applications.– 2024.– Vol. 36.– P. 16581–16606. https://doi.org/10.1007/s00521-024-09935-0.
Li Hongliang, Pingbing Ming The TRUNC element in any dimension and application to a modified Poisson equation. // Book.– 2024.– P. 1–18. DOI:10.48550/arXiv.2409.00748
Geonho Hwang, Yesom Park, Yueun Lee, Myungjoo Kang. Analysis of efficient preconditioner for solving Poisson equation with Dirichlet boundary condition in irregular three-dimensional domains. // Journal of Computational Physics.– 2024.– Vol. 519.– P. 1–22. https://doi.org/10.1016/j.jcp.2024.113418
Xin-Yu Fang, Gang Yao, Qing-Qing Zheng, Ping-Min Zhang, Di Wu, Feng Lin Niu. Helmholtz decomposition with a scalar Poisson equation in elastic anisotropic media. // Petroleum Science– 2024.– Vol. 21.– P. 1597–1610. https://doi.org/10.1016/j.petsci.2023.12.007.
Vigot G., Cuenot B., Vermorel O. and Bauerheim M. Graph neural networks for computational plasma physics on unstructured grids: application to approximate the Poisson equation for Hall-Effect Thrusters modeling // Journal of Electric Propulsion.– 2025.– Vol. 4(1):– P. 1–24 https://doi.org/10.1007/s44205-025-00146-w.
Thomas Bonnafont, Delphine Bessieres, Jean Paillol A finite volume method to solve the Poisson equation with jump conditions and surface charges: Application to electroporation. // Journal of Computational Physics.– 2024.– Vol. 504.– P. 1–22. https://doi.org/10.1016/j.jcp.2024.112862.
Li X.Y., Wu B.Y. Fast and highly accurate reproducing kernels based approach for Poisson equation. // Applied Mathematics Letters.– 2025.– Vol. 171.– P. 1–5. https://doi.org/10.1016/j.aml.2025.109636.
Kwesi Acheampong, Huiqing Zhu Localized Hermite method of approximate particular solutions for solving the Poisson equation // Applied Mathematics Letters– 2025.– Vol. 164. https://doi.org/10.1016/j.aml.2025.109471.
Yaru Liu, Yinnian He, Dongwoo Sheen, Xinlong Feng. A difference finite element method based on the conforming element for the 4D Poisson equation. // Computers and Mathematics with Applications.– 2024.– Vol. 174.– P. 18–30. https://doi.org/10.1016/j.camwa.2024.08.016.
Xiwei Tang, Wei Huang, Xueyou Li, Gang Ma. Prediction of mooring tension of floating offshore wind turbines by CNN-LSTM-ATT and Chebyshev polynomials. // Ocean Engineering.– 2025.– Vol. 331.– P. 1–18. https://doi.org/10.1016/j.oceaneng.2025.121327.
Heydari M.H., Rostami F., Bayram M., Baleanu D. Shifted Chebyshev polynomials method for Caputo-Hadamard fractional Ginzburg–Landau equation. // Results in Physics– 2025.– Vol. 74.– P. 1–16. https://doi.org/10.1016/j.rinp.2025.108289.
Lutz K¨ammererg An efficient spatial discretization of spans of multivariate Chebyshev polynomials. // Applied and Computational Harmonic Analysis.– 2025.– Vol. 77.– P. 1–23. https://doi.org/10.1016/j.acha.2025.101761.
Lieu B. Nguyen, P. Phung-Van, Chien H. Thai. Chebyshev polynomials in moving Kriging meshfree method for laminated composite plates. // Finite Elements in Analysis and Design.– 2025.– Vol. 245.– P. 1–14. https://doi.org/10.1016/j.finel.2025.104312.
Habib Ammari, Silvio Barandun, Ping Liu. Applications of Chebyshev polynomials and Toeplitz theory to topological metamaterials // Reviews in Physics.– 2025.– Vol. 13.– P. 1–49. https://doi.org/10.1016/j.revip.2025.100103.
Normurodov CH.B. Ob odnom effektivnom metode resheniya uravneniya Orra– Zommer fel'da. // Matematicheskoye modelirovaniye. Moskva.–2005.– №9(17).– S. 35–42.
Abutaliyev F.B., Normurodov CH.B. Matematicheskoye modelirovaniye problem gidrodi namicheskoy ustoychivosti. // Tashkent: Fan va tekhnologiya.– 2011.– 188.
Normurodov C., Toyirov A., Ziyakulova S., Viswanathan K.K. Convergence of Spectral Grid Method for Burgers Equation with Initial-Boundary Conditions. // Mathematics and Statistics.– 2024.– Vol. 12(2).– P. 115–125. DOI: 10.13189/ms.2024.120201.
Normurodov Ch.B., Abdurakhimov B.F., Djurayeva N.T. On Estimating the Rate of Convergence of the Initial Integration Method// International Scientific Conference on Modern Problems of Applied Science and Engineering: MPASE2024, 2–3 May 2024. Samarkand, Uzbekistan. — AIP Conf. Proc.3244,020061– 2024.– P. 1–11. https://doi.org/10.1063/5.0242041.
Normurodov CH.B., Ziyakulova SH.A. Chislennoye modelirovaniye uravneniy elliptichesko go tipa diskretnym variantom metoda predvaritel'nogo integrirovaniya // Problemy vychislitel'noy i prikladnoy matematiki. Tashkent.– 2024.– №5(61).– S. 59–68.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ch.B. Normurodov

This work is licensed under a Creative Commons Attribution 4.0 International License.