On an Interpolation of a Function by Natural Splines
DOI:
https://doi.org/10.71310/pcam.3_67.2025.08Keywords:
Hilbert space, extremal function, error functional, spline functionAbstract
There are algebraic and variational approaches of construction in the spline theory. In algebraic approach splines are considered as some smooth piecewise polynomial functions. In the variational approach splines are elements of Hilbert or Banach spaces minimizing certain functionals. Then we study the problems of existence, uniqueness, and convergence of splines and algorithms for constructing them based on their own properties of splines. In this paper, we study the problem of natural spline functions in a Hilbert space. Here, using the Sobolev method, an algorithm is given for solving a system of linear algebraic equations for the coefficients of the natural spline functions. For ???? = 2, explicit expressions for the optimal coefficients of the natural spline function in the Hilbert space ????(2,0) are obtained.
References
Schoenberg I.J. Contributions to the problem of approximation of equidistant data by analytic functions. Part A: On the problem of smoothing or graduation. A first class of analytic approximation formulae. Part B: On the problem of osculatory interpolation. A second class of analytic approximation formulae. Quart. Appl. Math. – 1946. – Vol. 4. – P. 45–99.
Schoenberg I.J. Spline interpolation and the higher derivatives. Number Theory and Analysis. New York: Plenum – 1969. – P. 279–295.
Holladay J.C. Smoothest curve approximation. Math. Tables Aids Comput. – 1957. – Vol. 11. – P. 223–243.
de Boor C. Best approximation properties of spline functions of odd degree. J. Math. Mech. – 1963. – Vol. 12. – P. 747–749.
de Boor C. A practical guide to splines. New York Heidelberg Berlin: Springer, – 1978. –342 p.
Schumaker L.L. Spline functions: basic theory. Cambridge: Cambridge University Press, – 2007. – 600 p.
Mastroianni G., Milovanovi’c G.V. Interpolation processes. Basic theory and applications. — Berlin: Springer, – 2008.– 262 p.
Farin G.E. Curves and Surfaces for Computer-aided Geometric Design. Fourth Edition, Academic Press, – 1997. – 429 p.
Unser M. Splines: a perfect fit for signal and image processing. IEEE Signal Processing Magazine, – 1999. – Vol. 16. – no. 6. – P. 22–38.
Lehmann T.M., Gonner C., Spitzer K. Survey: Interpolation methods in medical image processing. IEEE Transactions on Medical Imaging, – 1999. – Vol. 18. – no. 11. – P. 1049–1075.
Стечкин С.Б., Субботин Ю.Н. Сплайны в вычислительной математике. М.: Наука, –1976. – 248 с.
Василенко В.А. Сплайн-функции: теория, алгоритмы, программы. Новосибирск: Наука, – 1983. – 215 с.
Shadimetov Kh.M., Boltaev A.K. System for finding the optimal coefficients of an interpolation spline. AIP Conference Proceedings. – 2024. – 3004 p. https://doi.org/10.1063/5.0199834
Соболев С.Л. Введение в теорию кубатурных формул. М. Наука, – 1974. – 808 с.
Соболев С.Л., Васкевич В.Л. Теория кубатурных формул. СО АН России. Новосибирск, – 1996. – 484 с.
Шадиметов Х.М. Дикретный аналог оператора и его построения. Проблемы вычислительной и прикладной математики. – 1985. – № 79. – С. 22–35.
Shadimetov Kh.M., Hayotov A.R. Optimal quadrature formulas in the sense of Sard in ????(????,????−1)
(0, 1) space. Calcolo, – 2014. – №2. – P. 211–243.
Hayotov A.R. The discrete analogue of a differential operator and its applications. Lithuanian Mathematical Journal, – 2014. – Vol. 54. – №3. – P. 290–307.
Boltaev A.K., Hayotov A.R., Shadimetov Kh.M. Construction of optimal quadrature formulas exact for exponentional-trigonometric functions by Sobolev’s method. Acta Mathematica Sinica, English series, – 2021. – Vol. 37. – №7. – P. 1066–1088.
Shadimetov Kh., Boltaev A., Parovik R. Optimization of the approximate integration formula using the discrete analogue of a high-order differential operator. Mathematics, – 2023. – Vol. 11. – 3114 p.
Hayotov A.R., Milovanovi’c G.V., Shadimetov Kh.M. Interpolation splines minimizing a semi-norm. Calcolo, – 2014. — Vol. 51. – no 2. – P. 245–260.

Downloads
Published
Issue
Section
License
Copyright (c) 2025 A.K. Boltaev

This work is licensed under a Creative Commons Attribution 4.0 International License.