Numerical Study of Lyapunov Stability of an Upwind Difference Scheme for a Quasilinear Hyperbolic System
DOI:
https://doi.org/10.71310/pcam.3_67.2025.07Keywords:
exponential stability, hyperbolic system, mixed problem, difference scheme, Lyapunov functionAbstract
This study addresses a mixed problem for a quasilinear system of hyperbolic equations expressed in Riemann invariants, incorporating dissipative nonlinear boundary conditions. A numerical approach is developed through an initial-boundary difference problem utilizing an upwind difference scheme. The stability of nonlinear difference schemes is investigated, with a focus on establishing a sufficient stability criterion based on Lyapunov vector functions. The proposed criterion extends prior theoretical work, where a discrete Lyapunov function was formulated to demonstrate the exponential stability of the steady state for the quasilinear system. Numerical computations for a model problem validate these theoretical findings. The research highlights the potential of adapting the direct Lyapunov method to analyze the stability of nonlinear hyperbolic systems by constructing a positive definite function that exhibits monotonic decay along system solutions.
References
Aloev R.D., Berdyshev A.S., Bliyeva D., Dadabayev S.U., Baishemirov Z. 2022. Stability Analysis of an Upwind Difference Splitting Scheme for Two-Dimensional Saint–Venant Equations Symmetry. – Vol. 14. – Issue 10. – P.1–21. -doi: http://dx.doi.org/10.3390/sym14101986.
Aloev R.D., Dadabayev S.U. 2022. Stability of the upwind difference splitting scheme for symmetric t-hyperbolic systems with constant coefficients Results in Applied Mathematics. – Vol. 15 – P. 1–20. doi: http://dx.doi.org/10.1016/j.rinam.2022.100298.
Aloev R.D., Hudayberganov M.U. 2022. A Discrete Analogue of the Lyapunov Function for Hyperbolic Systems Journal of Mathematical Sciences(United States). – Vol. 264. – P. 661–671. doi: http://dx.doi.org/10.1007/s10958-022-06028-y.
Aloev R.D., Eshkuvatov Z.K., Hudayberganov M.U., Nematova D.E. 2022. The Difference Splitting Scheme for n-Dimensional Hyperbolic Systems Malaysian Journal of Mathematical Sciences. – Vol. 16. – Issue 1. – P. 1–10. doi: http://dx.doi.org/10.47836/mjms.16.1.01.
Aloev R.D. et al. 2021. Development of an algorithm for calculating stable solutions of the Saint-Venant equation using an upwind implicit difference scheme Eastern-European Journal of Enterprise Technologies. – Vol. 4. – Issue 112. – P. 47–56. doi: http://dx.doi.org/10.15587/1729-4061.2021.239148.
Banda M.K., Herty M. 2013. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws Mathematical Control and Related Fields. – Vol. 3. – Issue 2. – P. 121–142. doi: http://dx.doi.org/10.3934/mcrf.2013.3.121.
Demidovich B.P. 1967. Lektsii po matematicheskoy teorii ustoychivosti M.: Nauka, – 472 s.
Evtushenko Yu.G., Zhadan V.G. 1975. Application of the method of Lyapunov functions to study the convergence of numerical methods Zhurnal vichislitelnoy matematiki i matematicheckoy fiziki. – Vol. 11. – Issue 6. – P. 96–108. doi: http://dx.doi.org/10.1016/0041-5553(75)90138-X.
Guttlich S., Schillen P. 2017. Numerical discretization of boundary control problems for systems of balance laws: feedback stabilization European Journal of Control. – Vol. 35. –P. 11–18. doi: http://dx.doi.org/10.1016/j.ejcon.2017.02.002.
Coron J.M., Bastin G., dAndrea Novel B. 2007. A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws IEEE Transactions on Automatic Control. – Vol. 52. – Issue 1. – P. 2–11. doi: http://dx.doi.org/10.1109/TAC.2006.887903.
Lyapunov A.M. 1992. General problem of the stability of motion. L.: CRC Press. – 270 s.
Mapundi K. Banda and Gediyon Y. Weldegiyorgisa 2007. Numerical boundary feedback stabilization of non-uniform hyperbolic systems of balance laws International Journal of Control. – Vol. 93. – Issue. 6. – P. 1428–1441. doi: http://dx.doi.org/10.1109/TAC.2006.887903.
Martynyuk D.I. 1972. Lektsii po kachestvennoy teorii raznostnix uravneniy. – K.: Naukova dumka. – 246 s.
Samarsky A.A. 1989. Teoriya rasnostniyx sxem. M.: Nauka. – 616 s.
Gediyon Y. Weldegiyorgis 2017. Numerical stabilization with boundary controls for hyperbolic systems of balance laws Available at: http://hdl.handle.net/2263/60870.
Zubov V.I 1957. Metodi Lyapunova i ix primenenie. L.: Izd-vo Leningr. un-ta, – 240 s.

Downloads
Published
Issue
Section
License
Copyright (c) 2025 R.D. Aloev

This work is licensed under a Creative Commons Attribution 4.0 International License.