An optimal quadrature formula with derivatives for arbitrarily fixed nodes in the Sobolev space
DOI:
https://doi.org/10.71310/pcam.2_64.2025.06Keywords:
quadrature formula, Sobolev space, optimal approximation, Euler-Maclaurin formulaAbstract
The numerical computation of definite integrals plays a crucial role in various applied and theoretical disciplines. In many cases, exact analytical evaluation of integrals is in feasible due to the complexity of the integrand or the nature of the integration limits. Quadrature formulas provide an efficient approach for approximating definite integrals, relying on weighted sums of function values at selected nodes. Traditional quadrature formulas, such as those of Newton-Cotes, Gauss, aim to optimize accuracy by care fully choosing nodes and weights. However, optimal quadrature formulas can also be constructed in the sense of Sard, minimizing the error functional within a given func tion space. In this paper, we focus on constructing an optimal quadrature formula in the Sobolev space with arbitrarily fixed nodes. Unlike conventional approaches where coefficients are determined sequentially, we simultaneously optimize both function and derivative coefficients, improving overall accuracy and stability. The derivation employs the method of- functions, which allows us to express the quadrature formula’s co efficients explicitly and analyze its error properties. The obtained quadrature formula minimizes the error norm in the chosen function space, ensuring an improved approxi mation of definite integrals. Furthermore, when the nodes are equally spaced, our results generalize the well-known Euler-Maclaurin formula, demonstrating the effectiveness of our approach.
References
Shadimetov Kh.M., Hayotov A.R. 2022. Optimal Approximation of Error Functionals of Quadrature and Interpolation Formulas in Spaces of Differentiable Functions (in Russian), Muhr Press, Tashkent,
HayotovA.R., BabaevS.S., AbduaxadovA.A., Davronov J.R. 2024. An optimal quadrature formula exact to the exponential function by the phi function method. Studia Universitatis Babes-Bolyai Mathematica, 69 No. 3,– P. 651-663.
Catinas T., and Coman G. 2006. Optimal quadrature formulas based on the-function method. Studia Universitatis Babes-Bolyai Mathematica, 51 no. 1,– P. 49–64.
Lanzara F. 2000. On optimal quadrature formulae. Journal of Inequalities and Applications,– P. 201–225.
Ghizzetti A., Ossicini A. 1970. Quadrature Formulae. Academie Verlag, Berlin,
Shadimetov Kh.M., Hayotov A.R., Akhmedov D.M. 2015. Optimal quadrature formulas for Cauchy type singular integrals in Sobolev space. Appl. Math. Comput. 263– P. 302–314.
Abduaxadov A.A. 2024. Optimal approximation of Fourier integrals by the phi-function method. Problems of Computational and Applied Mathematics. 4/2(60):– P. 108–117.
Shadimetov Kh.M., Hayotov A.R., Bozarov B. 2022. Optimal quadrature formulas for oscillatory integrals in the Sobolev space. Journal of Inequalities and Applications 2022:103
Hayotov A.R., Khayriev U.N. 2022. Construction of an Optimal Quadrature Formula in the Hilbert Space of Periodic Functions. Lobachevskii Journal of Mathematics, Vol. 43, No. 11,– P. 3151–3160.
Hayotov A.R., JeonS., Shadimetov Kh.M. 2021. Application of optimal quadrature formulas for reconstruction of CT images. Journal of Computational and Applied Mathematics, 388 113313.
Hayotov A.R., Babaev S.S. 2023. An Optimal Quadrature Formula for Numerical Integra tion of the Right Riemann–Liouville Fractional Integral. Lobachevskii Journal of Mathe matics, Vol. 44, No. 10,– P. 4285–4298.
Shadimetov Kh.M., Mamatova N. 2021. Optimal quadrature formulas with derivatives in a periodic space. AIP Conf. Proc. 2365, 020030
Hayotov A.R., Shadimetov Kh.M., Abdikayimov B. 2022. On an Optimal Quadrature Formula in a Hilbert Space of Periodic Functions. Algorithms 15, 344.
Coman Gh. 1972. Formule de cuadratur€a de tip Sard. Stud. Univ. Babes-Bolyai Math. Mech. 17 no. 2,– P. 73–77.
Coman Gh. 1972. Monosplines and optimal quadrature formulae. Lp. Rend. Mat. . 5(), no. 6,– P. 567–577.
Nikolsky S.M. 1950. On the issue of estimates of approximations by quadrature formulas (in Russian), Advances in Math. Sciences , 5 no. 3,– P. 165–177.
Nikolsky S.M. 1988. Quadrature Formulas (in Russian), 4th ed., Nauka, Moscow,
Sard A. 1949. Best approximate integration formulas, best approximate formulas. Amer. J. Math. 71,– P. 80–91.
Sard A. 1963. Linear Approximation. 2nd ed., American Math. Society, Province, Rhode Island,
Hayotov A.R., Babaev S.S. 2021. Optimal quadrature formulas for computing of Fourier integrals in W(mm−1) 2 space. AIP Conference Proceedings, 2365 020021.
Sobolev S.L. 1977. Coefficients of optimal quadrature formulas. (in Russian), Doklady Akademii Nauk USSR, 235 no. 1,– P. 34–37.
