Numerical modeling of three-dimensional unsteady heat conduction processes in inhomogeneous bodies

Authors

  • A.M. Ikramov National University of Uzbekistan named after Mirzo Ulugbek Author

DOI:

https://doi.org/10.71310/pcam.1_63.2025.07

Keywords:

thermal conductivity, nonstationarity, finite element, node, cavity, inclusion, heterogeneity

Abstract

Numerical modelling is a powerful tool for the study of such processes, allowing to take into account complex geometry, inhomogeneity of properties and non-stationary nature of thermal fields. Modern computational methods provide high accuracy and stability of solutions even for complex three-dimensional problems. The relevance of the study of three-dimensional unsteady heat conduction processes in inhomogeneous bodies is due to the need to optimise thermal regimes in technical systems, improve the efficiency of heat exchange and ensure the reliability of structures. In this article the main approaches to numerical modelling of three-dimensional non-stationary heat conduction processes in inhomogeneous bodies are considered. An inhomogeneous structure with a cube-shaped cavity or an insulated copper inclusion in its centre is studied, and the influence of inhomogeneities on the temperature field distribution is investigated.

References

Карслоу Г., Егер Д. Теплопроводность твердых тел. М., – 1964. – 488 c.

Пыхалов А.А., Милов А.Е. ИрГТУ, – 2007. – 192 с.

Юдаев Б.Н. Теплопередача. М.: Высшая. школа, – 1981. – 319 с.

Polatov А.М., Ikramov А.М., Jumaniyozov S.P., Sapaev Sh.O. Computer simulation of two-dimensional unsteady-state heat conduction problems for inhomogeneous bodies by the FEM Modern Problems of Applied Mathematics and Information Technology (MPAMIT 2021). AIP Conference Proceedings 2781, 020019 (2023); https://doi.org/10.1063/5.0144813 Published by AIP Publishing.

Ikramov А.М., Polatov А.М. Finite Element Modeling of Nonstationary Problems of Heat Conduction under Complex Heat Transfer | Конечно-элементное моделирование нестационарных задач теплопроводности при сложном теплообмене. Bulletin of Irkutsk State University, Series Mathematics, – 2023. 45, – P. 104–120.

Ikramov А., Polatov A., Pulatov S., Zhumaniyozov S. Computer Simulation of Two Dimensional Nonstationary Problems of Heat Conduction for Composite Materials Using the FEM. AIP Conference Proceedings, – 2022. 2637, 040006.

Сегерлинд Л. Применение метода конечных элементов. М.: Мир, 1979. – 392 с.

Зенкевич О., Морган К. Конечные элементы и аппроксимация. М.: Мир, – 1986. – 318 с.

Polatov А.М., Ikramov А.М., Razmukhamedov D.D. Finite element modeling of multiplyconnected three-dimensional areas. Advances in Computational Design, – 2020. 5(3), – P. 277–289.

Mitchell A.R., Griffiths D.F. The Finite Difference Method in Partial Differential Equations. Wiley, – 1980. – 267 p.

Polatov А., Gaynazarov S., Ikramov А., Jumaniyozov S. Algorithms for Constructing a Finite Element Mesh of Compound Domains. AIP Conference Proceedings, – 2024. 3004(1), 060016.

Downloads

Published

2025-03-22

Issue

Section

Статьи