ЧИСЛЕННАЯ МОДЕЛЬ И ВЫЧИСЛИТЕЛЬНЫЙ АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ ФИЛЬТРАЦИИ БЕЗНАПОРНЫХ ГРУНТОВЫХ ВОД

Авторы

  • Э. Назирова Ташкентский университет информационных технологий имени Мухаммада аль-Хоразмий Автор
  • М. Шукурова Karshi branch of Tashkent University of Information Technologies named after Muhammad Al-Khwarizmi Автор

Ключевые слова:

уровень грунтовых вод, водонасыщенность, коэффициент фильтрации, инфильтрация, зона фильтрации

Аннотация

В данной статье представлены результаты исследований по теории фильтрации при точном прогнозе изменения уровня грунтовых вод при орошении в республике, а также при оценке влияния искусственных и естественных дренажных сооружений на изменение уровня грунтовых вод и один из важнейших аспектов комплексных исследований- математическое моделирование водных слоев с использованием различных математических моделей теории фильтрации, а также эффективное использование цифрового и компьютерного моделирования при решении задач теории фильтрации.

Библиографические ссылки

Abutaliev F.B. and. etc. 1976. Application of numerical methods and computers in hydro geology. Tashkent ”Fan”

Belman R., Kalaba R. 1968. Quasilinearization and nonlinear boundary value problems. Mir, M.,

Davydov L.K., Dmitrieva A.A., Konkina N.G. 1973. "General Hydrology". Ed. 2nd, revised and supplemented.- L: Gidrometizdat,– 464 p.

Khuzhayarov B.Kh. 2004. Macroscopic simulation of relaxation mass transport in a porous medium. Fluid Dynamics.– Vol. 29,– no. 5.– P. 693–701.

Suzuki A., Horne RN, Makita H., Niibori Y., Fomin SA, Chugunov VA, Hashida T. 2013. Development of fractional derivative-based mass and heat transport model. Proceedings, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stan ford, California, February 11-13. SGP-TR-198.

Khuzhayorov B.Kh., Makhmudov Zh.M. 2014. Mathematical models of filtration of inho mogeneous liquids in porous media. Tashkent: Fan,– 280 p.

Khuzhayorov B., Dzhiyanov T., Khaydarov O. 2018. Double-Relaxation Solute Transport in Porous Media. International Journal of Advanced Research in Science, Engineering and Technology. Vol. 5, Issue 1, January– P. 5094-5100.

Fomin S.A., Chugunov V.A. and Hashida T. 2011. Non-Fickian mass transport in fractured porous media Advances in Water Resources. 34 (2)– P. 205–214.

Zikiryaev Sh.Kh. 2012. "Problems of filtration of inhomogeneous liquids taking into account adsorption and heterogeneity of filling the pore space": Abstract ... cand. phys.-mat. sciences.. Samarkand,– 42 p.

Molokovich Yu.M. 2006. Non-equilibrium filtration and its application in oilfield practice.. M.- Izhevsk: Research Center "Regular and Chaotic Dynamics"; Institute for Computer Research,– 214 p.

Nikiforov A.I., Sadovnikov R.V. 2016. Solving the problems of waterflooding of oil reservoirs using polymer-dispersed systems on a multiprocessor computer system.. Institute of Me chanics and Mechanical Engineering of the Kazan Scientific Center of the Russian Academy of Sciences,– Volume 28,– No. 8.– P. 112–126.

Nazirova E.Sh. 2019. Mathematical models, numerical methods and software complexes for studying the processes of filtration of liquids and gases. Springer, Diss ... Dr. Tech. sciences.- Tashkent,– 227 p.

Samarskiy A.A. 1952. Introduction to the theory of difference schemes. M: "Science

Saidullaev U.Zh. 2019. “Derivation and numerical analyses of suspensions filtering and f iltration hydrodynamic models”. Diss. PhD ... Phys.-Math. sciences. Tashkent,– 112 p.

Makhmudov Zh.M. 2019. "Improvement and analysis of mathematical models of filtration of inhomogeneous liquids in porous media". Diss ... Dr. Phys.-Math. sciences. Samarkand,– 216 p.

H.F. Wang and M.P. Anderson 1995. Introduction to Groundwater Modeling. Academic Press,

A. Fowler 2011. Mathematical geoscience, Springer.

T. LochbYouhler, J. Doetsch, R. Brauchler, and N. Linde 2013. Structure-coupled joint in version of geophysical and hydrological data. Geophysics,– vol. 78,– no. 3,– P. ID1–ID14.

Comisiron Nacional del Agua, 2014. Determinaciron de la disponibilidad de agua en el acurıfero Valle de Puebla (2014), Estado de Puebla, Puebla, Mexico,

J. Bear and A. H. D.Cheng 2010. Modeling Groundwater Flow and Contaminant Transport. Springer,

G. DeMarsily, F. Delay, V. Teles, and M.T. Schafmeister 1998. Some current methods to represent the heterogeneity of natural media in hydrogeology. Hydrogeology Journal,– vol. 6,– no. 1,– P. 115–130.

Yang Y.S., Kalin R.M., Zhang Y., Lin X., Zou L. 2001. Multi-objective optimization for sustainable groundwater resource management in a semiarid catchment. Hydrol. Sci. J. P. 55–72.

Maier H.R., Kapelan Z., Kasprzyk J., Kollat J., Matott L., Cunha M., Dandy G., Gibbs M., Keedwell E., Marchi A., et al. 2014. Evolutionary algorithms and other metaheuristics in water resources. Current status, research challenges and future directions. Environ. Model. Softw. 62,– P. 271–299.

Horne A., Szemis J.M., Kaur S., Webb J.A., Stewardson M.J., Costa A., Boland N. 2016. Optimization tools for environmental water decisions: A review of strengths, weaknesses, and opportunities to improve adoption. Environ. Model. Softw.– 84,– P. 326–338.

Mirghani B.Y., Mahinthakumar K.G., Tryby M.E., Ranjithan R.S., Zechman E.M. 2009. A parallel evolutionary strategy based simulation-optimization approach for solving ground water source identification problems. Adv. Water Resour. 32,– P. 1373–1385.

Ayvaz M.T. 2009. Application of Harmony Search algorithm to the solution of groundwater management models. Adv. Water Resour. 32,– P. 916–924.

Safavi H.R., Darzi F., Mariño M.A. 2010. Simulation-optimization modeling of conjunctive use of surface water and groundwater. Water Resour. Manag.– 24,– P. 1965–1988.

Опубликован

2024-05-21

Выпуск

Раздел

Статьи