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This article presents a scientific study of seismic oscillations and Rayleigh wave prop-
agation models. The research details how Rayleigh waves propagate in a semi-infinite
elastic medium, the types of motions they create on Earth’s surface, and how their am-
plitude decreases with depth. In the first section, the study examines Rayleigh waves and
their mathematical representations, illustrating how these waves form and propagate in
a semi-infinite medium. In addition, the relationships between wave amplitude and other
parameters are expressed by mathematical equations. The following sections deal with
the problem of defining the elastic properties of the medium taking boundary conditions
into account. The study provides an analysis of strains and stress tensors, discusses their
role in wave propagation, and describes in detail the components of stress and strain at
each point. To solve problems with geometric symmetry, the Boundary Element Method
(BEM) is used. Using the Morrow Point Dam model as an example, the study explains
how this approach helps reduce computational effort by taking symmetry planes into
account. It also describes the balance of hydrodynamic pressure and normal stresses at
the interface between water and solid media. This article serves as a valuable resource for
understanding the mathematical and physical principles, computational approaches, and
boundary conditions in wave propagation that are critical to geophysical applications.
Finally, the study highlights how the amplitude of Rayleigh waves changes with depth in
a semi-infinite medium and discusses the importance of elastic constants in controlling
these changes. This research provides essential theoretical insights useful for geological
and engineering practices.
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1 Introduction

After analyzing the wave propagation mechanism P and S its various peculiarities, this
section deals with the study of Rayleigh waves. Rayleigh waves are surface waves that
produce retrograde elliptical motion of the ground. They are slower waves than bulk waves
and their propagation speed is almost 70% of the propagation speed of waves S. As seen
below, a plane Rayleigh wave propagating in a viscoelastic half-space itself confirms the
governing equation of the problem. To verify this statement, we assume the displacement
field caused by a wave of this type propagating in the positive direction of the axis x5
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with a speed ¢ and a wave number k = w/c.

Uy = 07
Uy = Aebxgeik(ct—.z‘g)’ (1)

Uz = Beba}gezk(ct—xz).

The non-zero components of the displacement field defined by expressions (1) are the
result of the product of two exponential functions. The second of them e?*(¢*~#2) represents
a travelling wave that propagates with speed ¢ according to the positive direction of the
axis 7. The first e**3 taking into account the direction of the axes with which we worked
(note that the value of the coordinate x3is always negative since the half-space has been
defined), for b positive values of leads to a negative exponent, which implies that the
amplitude of the wave decreases with depth, a characteristic phenomenon of this type of
waves. Figure 1.1 shows the motion experienced by a soil particle when a wave of the
type analyzed propagates.

Motion of a particle
AWANIG
: 1

Wave front

Ve

Figure 1 Propagation and motion of a particle caused by a Raleigh wave.

Substituting the displacements given by expressions (1.1) for the two non-zero com-
ponents of the displacement (us,u3)in the Navier equation:

m [_kQAebxgeik(ct—:rg) + b2Aebrgeik(ct—x2)] + ()\ + M)

[_kQAeba:g eik(ct—zg) + ikaeba:g eik(ct—zg)] _ _pw2Aebx3 eik(ct—a:g) (2)
m [_kZBeba:geik(ct—xg) + b2Bebx36ik(Ct_x2)} + ()\ + M)
[Zk,bAebz5 eik(ct—xz) + bQBebzg eik(ct—a:g)} _ _pw2Bebx3 eik’(ct—zg)'

Rearranged and taking out a common factor A, B the above equations can be written
as:
[0 — B2\ +2p) + pw?] A+ ikb(\ + pu)B = 0, 3)
ikb(A + ) A + [B*(N + 2u) — k*p + pw?] B = 0.
So that the system of two equations and two unknowns given by (3) has a non-trivial
solution, i.e. for A and B to be different from zero, the determinant of the system must

be zero. So it is an eigenvalue problem that determines values of b that lead to a solution
other than the trivial one.

b — k2 (N + 2p) + pw? ikb(\ + )
ikb(\ + p) AN+ 2p) — k2 + pw?

Therefore:



Seismic excitation model of half-space ... 47

(D% — K2+ 20) + pw?] [P\ + 2u) — K2 u+ pw?] — [ikb(X + p)]* = 0. (4)
Dividing the above expression by p and taking into account the following identities:

A+2 A
E:Ci ( + u) :C?; <—+H) :cﬁ—cg w2:]€2€2.
p p p

Equation (4) becomes:

b () + b’ [k%g(c? Q)+ k(=) + k(- 02)2} +
+EH S — ) (- ) =0.

p

The four solutions of equation (5) are:

2 2

2 2
b§=k2(1—c—2) — by = +k (1-%)

Cp C

Taking the positive roots (remember the need for the parameter b to be positive so
that the amplitude decreases with depth and the known physical reality is fulfilled) and
substituting them in the first of the equations (3) we have:

9}

(6)

2 ¢’ 2 3. o o (B
b=b — [k*(1— S)c + k(2 =2 | +ik k;(l—g) (c, — ) 1 =0. (7)
Which simplified leads to a relationship between the amplitudes of the two waves
involved. B " n
1 1
(Z) ST LI (8)
1 E(1—-%)° 1
c? c? 2 B
b="by — {/@2(1 Cp) 2+ k(P —c )} +ik | k(1 — c—%) ] (c2—c2) (Z) =0 (9)

Which operating in an analogous manner leads to:

(NI

2

Given the development, we can conclude that to solve the problem there must be a
relationship between the amplitudes A and B of the waves that depends on the values of
b. In this way, the displacement field for this type of waves that satisfies the governing
equation is the one defined by (11).

uy = 0
— Aleblxgeik(ct—xz) + A26b2x36ik(ct—x2) (11)
ug = _%Aleblxgezk(ctfxg) + %Aerzxgezk(ctfxg)'
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2 Imposition of boundary conditions

To fully define the displacements, it is necessary to determine the value of the amplitudes
A; and A; the wave number k. To do this, we will apply the boundary conditions
corresponding to the half-space x3 = 0. There are no tensions on the free surface.

o 0923 = 07
r3=0 — { a3 = 0. (12)
Therefore: 5 5
023 = [ o T 0,
8.1'3 8.1'2

(13)

P 3u3+)\ 8u1+8u2+8u3 -0

S M@xg 81’1 85(,’2 81’3 o

Substituting the derivatives of the displacement field given by expressions (11) in
equations (13) we arrive at:

T3 = 0 — b2 b2 (14)
20 + |20 = A (1- )] 42 =0,
Calling i—i = 7, and g—; = 1, it is possible to write:
s P
k? 1 1 b2 c?
bpo1-% 17 k2 e P )

S

Expressions that substituted in (14), taking into account the expression of b; and of
b, and after making a series of simplifications lead to the system of equations:

(2 = 70)Ap +2(1 —9,)7 (1 — 7,)2 4y = 0,

(16)
2141 + (2 - ’)/S)AQ =0.

In order for A; and A, to have a value other than trivial, the determinant of the
system must be zero. This is also an eigenvalue problem, which, as we will see below,
the values of v, and of 7, since both are related to each other via the elastic constants.
Therefore: ) )
(2=7s) 21 —)2(1—s)2

=0. 17
2 (2 =) (17)
Whose characteristic equation, taking into account the relationship v, = /\—JFZLM%, can
be written as a function of one of the variables as:
3
1 1
2 -7, —4(1- o) (1—70)2 =0. 18
(2 =) ( AJFQMV)( s) (18)

The solution of (18) leads to the value of 7, and therefore to the propagation speed ¢
if the properties of the medium are known.
On the other hand, through the second of the equations (16) it is possible to find a
relationship between A; and As:
2

2 — s
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If we introduce this relationship in the expression of the displacement field given by
the expressions (11) it remains as:

up =0
Uy = Al €b113 4 Lebzws eik(ct—m)
2- Vs (20)
ik by 2 .
= A _ 7Y bizs e = boxs Zk(thxQ).
" 1< b1e +’ik‘2—fys€ >e

3 Strain and stress tensors

Once the displacement field expressions are known, it is possible to determine the
strain and stress tensors. As usual, the deformation tensor is first calculated using the
compatibility equations and then the expression for the stress tensor at each point in
the half-space determined using the behavior law. Taking into account the displacements
determined in the previous section, Equations (20), the deformation tensor looks like this:

0 0 O
gij = 0 E99 £93 . (21)
0 e32 €33

Whose non-zero components are the following:

3u2

€o0 = a—xz = —ik (Aleblgc3 + A26b2x3) e_ik“,
81,6 y b2 —ikx
€33 = 8_x2 = —ik (Aleb”ﬁ3 - iAer”S) e F 2, (22)
1 /0 0 1 k? .
E93 — €32 — 5 (a—ZQ + a_ZS) = 5 ((bl + b_) Aleblzg —+ 262A2€b2$3) eimgw.
3 2 1

Once the strain tensor is determined, it is possible to determine the components of
the stress tensor using the material behavior law:

0 00
045 = 0 0922 023 . (23)
0 o032 033

where the non-zero components are:

b2 .
o1 = 2uen + Aegr = —A (zk: + i) Agel2ese—ikre

b2 .
O99 = 2UEgs + Nep = {—QMikAlebl“ — ()\ (zk + i) + 2uik> A2€b2x3:| e kw2

’ (24)

b .
033 = 20E33 + Aepp = {2,%1{:14161’”3 — (()\ +2u) (i) + 2,uik:> Ageb”3] ¢ thw2
2

k ,
093 = 032 = 2#523 = U |:(b1 + b_> A1€b113 — 2bA2€b2x31 eilk‘rz,
1

It is possible to find a parallel between the expressions obtained for the displacement
field caused by the propagation of a Rayleigh wave and the expression (*) used to calculate
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the field caused by waves P and S in previous sections. If we compare the general expres-
sion of the field given by (*), concretized for the problem addressed, with those obtained
for the displacement field of a Rayleigh wave, equations (20), in terms of the vectors, the
direction cosines of the following include the displacements and the propagation direction
vectors:

ik b
4o = |o, 1, - % dv = |o, 1, -2 2
{07 ) bl ) 07 ) ’l/k ) ( 5)
b ib
© = o, 1, -1 W= o, 1, =2]. 2
S [07 ) L :| ) S |i07 "k 1 ( 6)

The complex nature of the components in the direction is noticeable x3.

4 Extension of two-dimensional expressions to the general

problem in 3 dimensions

The formulation presented so far allows us to consider a wave contained in the plane
with a generic incidence xox3. However, it does not reflect the possible incidence included
in another level. The goal of this section is to implement this possibility.

Figure 2 shows a representation of the axis system used and the relationship between
the axes previously used to solve the problem, henceforth, called (Zo#3) and the new
generic axes (xax3), (T3 = Z3):

- |
o
[ ]

7
i |l'1

Figure 2 Relationship between the 2223 and axes xox3.

By defining a set of unit vectors in the direction of the three Cartesian axes of the
initial problem (il, 19, ig)and another in the direction of the new ones (i1, is,13), it can be
shown that the following relationship exists between them: ¢

i1 cos (o)  sin(pg) 0O zl
io | = | —sin(gg) cos(pg) O ip | - (27)
is 0 0 1],
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The matrix that relates the set of unit vectors of the initial axis system with that of
the system xxo13 is called the rotation matrix and will be denoted from now on by the
letter R.

Although the expressions are of completely general application, the parameters relative
to the wave will be used as an example SV'. This is done for illustrative purposes only, and
the expressions and conclusions are completely general. In this sense, the displacement
field in the initial axis system (Z1Z2%3) can be expressed as:

i = O gince=iks GO (1) Agife—ik,s(s‘<1>~f) +d® A;ef o ikp(32)7) (28)

Whose propagation and displacement vectors § are d: 6

0 ] 0 |
50 = |cos ()] , d? = | sin(6y) |,
sin (90)_ — COS ((90)_
o 0
s = lcos(6))] , dV = | —sin(6) ] , (29)
| sin (61) | —cos (61) |
- 0 0
53 = | cos(8y) |, d® = | cos(6,)
| —sin (6) — sin (6y) |

Premultiplying the displacement field expression by R we obtain:

Rii = RA® Aee= 0D 4 R Ared o= ke CM1) 4 R gref o=ika(8P0D) - (30)
The scalar product expression 59 - 7 can be expressed as:

50 = (R’ls(j))TRflr = [s(j)}T(R’l)TR’lr = [s(j)}TRR’lr = sU)p, (31)

According to this equality, it can be established that the product of the matrix R by
the displacement field takes the value:

Rii = RA© Alnee=h:"n) o R Ares g=iks(sMn) 4 R gref o=ikp(sr) - (39)

Also taking into account the following equalities:

u = Ru,
s = R5© O = RO
sM =Rz g = RaM, (33)
s@ — Rs@ 4@ = RI®.
The displacement field is finally expressed as:
u = d(O)AZL)ce—iks(s(O)-r) + d(l)Aws"ife—iks(s(l)-r) + d(2)A;efe—ikp(s<2)-r). (34)

Thus, the problem can be posed in a way analogous to that performed for the plane zox;3
with the exception that the vectors s and d are given by the expressions (33).
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5 Seismic excitation model. Incorporation of the incident field
equations into a coupled Boundary Element model.

In the models that are intended to be solved, the seismic excitation has been imple-
mented as a field of plane harmonic waves in the ground that affects the reservoir location
area from a distant point. As a consequence of the presence of the canyon, the dam and
the reservoir, the field studied for each type of wave in the previous sections, which we
have called the incident field (u$), is distorted. We can consider the displacement field in
the ground as the superposition of the displacement fields of two problems (figure 3). The
first corresponds to that caused by the train of incident waves on the uniform half-space
(u§) whose analytical expression is that obtained previously. The second represents the
field diffracted by the presence of the canyon-dam-reservoir system (u$,). Therefore the
total field (u%) in the ground will be the sum of both (u$ = u§ + u$,). In the dam, in the
impounded water and in the porous sediment, however, there is only a diffracted field,
the total field being equal to this (uf = uf), u§ = uf, uff = uis?).

Figure 3 Seismic excitation model. Total ground field as superposition of the incident u; and
diffracted fields u7,.

Since the incident field is explicitly known, the problem is to calculate the diffracted
field evaluation by means of the BEM. The system of boundary element equations pro-
posed for the diffracted field in the two solid regions (soil and dam), in the fluid region
(water) and in the porous region (sediment) leads to:

Heuj, = G t5,,

HP Yy = GP 1Y,

op\* (35)

Hept — o [ Z£
pD (an)TJ

sed , sed __ sed ysed
H* " upy® = G 5"

For illustrative purposes, one of the boundary element networks of the system under
discussion is shown in Figure 4. The aim is to solve a symmetrical problem (with respect to
the vertical plane containing the long axis of the canyon) so that only half of the complete
geometry is displayed. Although the free surface of the ground extends to infinity, the
boundary element network only extends to a certain distance from the dam. This does
not introduce significant errors since equations (35) are written in terms of the diffracted
field that satisfies the radiation conditions. To minimize the error caused by these ground
shortenings, it is necessary to determine, through a series of numerical tests, the distance
from the dam that ensures the attenuation of the diffracted field, thereby defining the
free surface distance to be discretized. With all that has been said about the total field
in each region, equations (35) can be written in terms of the total field of displacements
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Figure 4 Boundary element model for Morrow Point Dam.

and stresses in the soil, the dam, the water and sediment as follows:
Houp — Gty = Hup — G° 3,
HP W = GP Y,
op\*“ (36)
Hep = Q¢ [ £ ’
br <3n) T
Hsed u;fd . Gsed t;fd = 0.

The boundary conditions and interface conditions are applied to these equations, ex-
pressed as the total field. Thus, the state of zero tension is exerted on the free soil surface
and on the dam walls that do not come into contact with water. Stress balance and con-
tinuity of displacements are prescribed in the elements of the dam-soil interface. At the
interfaces between the water region and the solid region, the absence of tangential stress
in the solid and the equality of normal stress and hydrodynamic pressure in the fluid are
determined. The kinematic condition in this case is the equality of displacements in the
direction normal to the interface.

6 Treatment and implementation of field equations in problems

with geometric symmetry planes.

The code used to solve the problems posed allows, in cases where geometric symmetry
is present, in order to reduce the number of degrees of freedom and therefore reduce
the computing time, to discretize only the part necessary to define the geometry of the
problem. For example, and as previously mentioned, in the proposed Morrow Point Dam
boundary element model, there is a geometric plane of symmetry formed by the axes
running toward the canyon closure on one side and the elevation of the dam on the other
side, so that only half of the set needs to be discretized, see Figure 1.4.

Solving the problem requires solving two cases, one symmetrical and one antisymmet-
ric, since there is no symmetry in the stress (note that except in certain vertical incidence
cases, the wave does not impinge on the model symmetrically). In order to take advan-
tage of geometric symmetry, it is necessary to adapt the expressions for the incident field
developed in the previous sections to the specific case of symmetry. To do this, we start
from the generic expression for the displacement field (equation (*)):

n
up= Y dlAjem ), (%)
=0
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Suppose we call the plane with respect to which geometric symmetry exists x;z9, the
terms affected by the symmetry are those that contain references to the spatial coordi-
nates, in this case, the exponential terms and in particular those related to the coordinate
x3. Developing the scalar product present in the exponent of the previous expression for
wavej, we have:

efikj(s(j)-r) — efikj(sgj)-xl)efikj(s;j)-xg)efikj(sgj)-xg) (37>

The last of these terms, the one affected by the symmetry conditions, can be written

as:
ik (s5)-w3) _ 1 [e—ikj(sg)'xa) + e—ikj(s;(aj>'$3)] + 1 [e—ikj(sgj)'ﬂfa) _ k(s @)
’ | 2 (38)
= cos (kjsgj)xg,) + isin <k:js:(,)])a:3> :
In order to simplify the nomenclature, equation (38) can be written as:
e
e~ hi(s5w3) — eze(f) + ezs(f). (39)
where: '
ezc(j) = cos <kjséj)a:3> :
4 (40)
ezs(j) = isin (kjséj)x3> :
By analogy, the components not affected by symmetry (z;and x5) can be written as:
e—ik‘j(sgj).xl) — ex(j)’
G (41)
—ik;(s ])-1'2) _ .
e M) = ey(j).
By introducing expressions (39) and (41) the exponential of expression (*) becomes:
—iki(s() . . . . . . . . . . .
e MU = ea(f)ey(j) [eze(j) + ezs(f)] = ex(f)ey(f)ezc(j) + ex(f)ey(f)ezs(i) . (42)
Symm;t;ic part Antisym:nretm'c part

Thus, the displacement field is expressed as a superposition of a symmetric and an
antisymmetric problem:

wi =Y dl AT =N @ Ajen(fley(flezc(i) + Y dlAjex(f)ey(i)ezs(s).  (43)
j=0

J=0 J=0

Once the displacement field is determined as the sum of two problems, it is easy to
obtain the expressions for deformations and stresses using the compatibility equations
and the law of behavior of the medium with analogous decomposition.

7 Conclusion

In summary, this study successfully developed a seismic excitation model to analyze
the propagation of Rayleigh waves in a semi-infinite elastic medium. By studying the
wave’s displacement field, boundary conditions and stress-strain tensors, the research
demonstrates the complex behavior of Rayleigh waves, including their amplitude decay
with depth. The application of the Boundary Element Method (BEM), particularly using



Mogenpb ceficMIdaecKoro Bo30YKIE€HUS MTOIYIIPOCTPAHCTBEHHOTO . . . 95

the example of Morrow Point Dam, highlights the utility of geometric symmetry in sim-
plifying computational requirements. Overall, this research provides fundamental insights
into seismic wave behavior in elastic media that are critical for applications in geophysics
and earthquake-resistant design.
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MOJEJIh CEICMINYECKOI'O BO3BYXK/JIEHISI
ITOJIVIIPOCTPAHCTBEHHOI'O PACIIPOCTPAHEHU{
BOJIH P3JIEA

Xoamypodos A.3., *Mamaros M. Y.
*mm939011166Qgmail . com
Kapmunackuii rocytapcTBeHHDBIN yHUBEPCUTET,
730003, ¥Yz6ekucran, r. Kapmmu, yia. Kyaabar, 17.

B s70if crarbe mpeicraBiieHO HaydHOE MCCIEIOBAaHHE CEHCMHYECKHX KojeOaHui u
MojIesiell paciipocTpanenus BoJiH Pajes. B uccienoBanuy monpoOHO OMUCHIBACTCS, Kak
BOJIHBI P3j1es pacnpocTpaHsaioTcs B MOJTyOECKOHETHON YyIPYTroi cpejie, TUIbI JIBUKEHUI,
KOTOpPbIEe OHHM CO3/IAI0T Ha MOBEPXHOCTH 3EMJIM, W KaK WX aMILIATYAa YMEHBITaeTCs C
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rybuHoli. B mepBoM paszjiesie ucciieoBaHus pacCMaTpPUBAIOTCS BOJHBI Pajiest u nux ma-
TeMaTUIeCKNe IPEICTABJICHNS, MLIIOCTPUPYIOIINE, KAK 9TU BOJHBI (DOPMUPYIOTCA U PaC-
MIPOCTPAHSIOTCS B MOJIyOECKOHEUHOI cpesie. KpoMe TOro, COOTHOIIEHMST MEXK Ty aMILIUTY-
JION BOJTHBI U JIDYTHUMH IapaMeTPAMU BBIPAXKAIOTCA MaTeMaTHIeCKUMU ypaBHeHUsAMH. B
CTIEYIOIINX pa3jesiax pacCMaTpPUBAETCS PoOJeMa OIpee/ieHusT YIIPYTUX CBOMCTB cpe-
JIBL C YUE€TOM I'DAHMYHBIX yCJIOBWitl. B mcciieloBaHnn 1IpejicTaBiieH aHam3 jedopMariuit
U TEH30POB HAaIPsKEHUil, 00CYKIAeTCA UX POJIb B PACIPOCTPAHEHUU BOJIH U OJAPOOHO
OIMCBHIBAIOTCST KOMIIOHEHTBI HAIlpsi?KeHusi u jaedopMalnuu B Kaxkaoil Touke. s perre-
HUS 33/1a9 C F€OMETPUYECKON CHMMETPHUEN HCIIOJIb3yeTCsd METO/I TPAHUYHBIX 3JIEMEHTOB
(BEM). Ucnons3yst B kadecTBe npuMepa Moeab wiotuabl Moppoy-Iloitat, nccrenosa-
HUEe OODBSICHSET, KaK 3TOT IOMAXOJ MOMOTaeT COKPATUTL BBIYUCIUTEIbHBIE 3aTPAThI 32
cUeT ydeTa ILUIOCKOCTell cummerpuu. B HeM TakxKke onmchiBaeTcs OaIaHC TUIAPOIUHAMU-
YeCKOTO JaBJICHUSI U HOPMAJbHBIX HAIPs2KEHUI HA T'DAHUIE pa3iesaa MEXIy BOIoH u
TBEP/JIBIMA CPEJIAMU. JTA CTAThS CIYYKUT MEHHBIM PECYPCOM JIJTsT IOHMMAHUS MATEeMATH-
YeCKUX U (PU3UIECKUX HPUHITUIIOB, BIYUCIUTEIbHBIX [TOJIXO0B U I'DAHUYHBIX YCJIOBUIA
B PaACIpPOCTPAHEHUU BOJIH, KOTOPbIE MMEIOT DEIIAloliee 3HAUYEHUE I TeOpU3nIeCKUX
npuioxkenuit. Hakoner, B uccjaeqoBaHUN MOTIEPKUBACTCHA, KaK aMILIUTYIA BOJIH Pajes
U3MEHSeTC ¢ IIyOMHON B MOJTyOECKOHEUIHOH cpejie, U 00CYXKIAeTCs BayKHOCTh YIPYTUX
KOHCTAHT B YNPABICHUN ITUMH M3MEHEHWSIMU. JTO UCCIEOBAHNE JTaeT BaXKHDLIE TeOpe-
THUYECKHE UJIEH, IT0JIE3HbIE JJIs Ie0JIOTUYECKO U NHYKEHEPHON TPAKTHKH.

KutioueBbie ciioBa: ceiicMuveckue KoJiebaHUsi, TTOBEPXHOCTHBIE BOJIHBI, BbIYHCJIATE b
Has MOJIEJIb, yUpyras cpela, TEeH30Pbl HaIpsKeHui u j1edOopMaIiuii, reOMeTpuIecKast
CUMMETPUSI, TUAPOJIMHAMUICCKOE TABJICHUE, TAIA0NNe U T ParupoOBAHHBIC TTOJIS.

Huruposanue: Xoamypodos A.3., Mamarnos M.U. Monenb celicMudeckoro Bo30yK ie-
HUSI TI0JIY IPOCTPAHCTBEHHOTO pacipocTpanenus BosiH Pajiest // TIpo6iembl BBIYUC AT b
HOIl 1 nmpuKIafHoi Maremarnku. — 2024. — Ne6(62). — C. 45-56.
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