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This article presents a scientific study of seismic oscillations and Rayleigh wave prop-
agation models. The research details how Rayleigh waves propagate in a semi-infinite
elastic medium, the types of motions they create on Earth’s surface, and how their am-
plitude decreases with depth. In the first section, the study examines Rayleigh waves and
their mathematical representations, illustrating how these waves form and propagate in
a semi-infinite medium. In addition, the relationships between wave amplitude and other
parameters are expressed by mathematical equations. The following sections deal with
the problem of defining the elastic properties of the medium taking boundary conditions
into account. The study provides an analysis of strains and stress tensors, discusses their
role in wave propagation, and describes in detail the components of stress and strain at
each point. To solve problems with geometric symmetry, the Boundary Element Method
(BEM) is used. Using the Morrow Point Dam model as an example, the study explains
how this approach helps reduce computational effort by taking symmetry planes into
account. It also describes the balance of hydrodynamic pressure and normal stresses at
the interface between water and solid media. This article serves as a valuable resource for
understanding the mathematical and physical principles, computational approaches, and
boundary conditions in wave propagation that are critical to geophysical applications.
Finally, the study highlights how the amplitude of Rayleigh waves changes with depth in
a semi-infinite medium and discusses the importance of elastic constants in controlling
these changes. This research provides essential theoretical insights useful for geological
and engineering practices.
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1 Introduction
After analyzing the wave propagation mechanism 𝑃 and 𝑆 its various peculiarities, this
section deals with the study of Rayleigh waves. Rayleigh waves are surface waves that
produce retrograde elliptical motion of the ground. They are slower waves than bulk waves
and their propagation speed is almost 70% of the propagation speed of waves 𝑆. As seen
below, a plane Rayleigh wave propagating in a viscoelastic half-space itself confirms the
governing equation of the problem. To verify this statement, we assume the displacement
field caused by a wave of this type propagating in the positive direction of the axis 𝑥2
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with a speed 𝑐 and a wave number 𝑘 = 𝜔/𝑐.

𝑢1 = 0,

𝑢2 = 𝐴𝑒𝑏𝑥3𝑒𝑖𝑘(𝑐𝑡−𝑥2),

𝑢3 = 𝐵𝑒𝑏𝑥3𝑒𝑖𝑘(𝑐𝑡−𝑥2).

(1)

The non-zero components of the displacement field defined by expressions (1) are the
result of the product of two exponential functions. The second of them 𝑒𝑖𝑘(𝑐𝑡−𝑥2) represents
a travelling wave that propagates with speed c according to the positive direction of the
axis 𝑥2. The first 𝑒𝑏𝑥3 , taking into account the direction of the axes with which we worked
(note that the value of the coordinate 𝑥3is always negative since the half-space has been
defined), for 𝑏 positive values of leads to a negative exponent, which implies that the
amplitude of the wave decreases with depth, a characteristic phenomenon of this type of
waves. Figure 1.1 shows the motion experienced by a soil particle when a wave of the
type analyzed propagates.

Figure 1 Propagation and motion of a particle caused by a Raleigh wave.

Substituting the displacements given by expressions (1.1) for the two non-zero com-
ponents of the displacement (𝑢2, 𝑢3)in the Navier equation:

𝜇
[︀
−𝑘2𝐴𝑒𝑏𝑥3𝑒𝑖𝑘(𝑐𝑡−𝑥2) + 𝑏2𝐴𝑒𝑏𝑥3𝑒𝑖𝑘(𝑐𝑡−𝑥2)

]︀
+ (𝜆+ 𝜇)[︀

−𝑘2𝐴𝑒𝑏𝑥3𝑒𝑖𝑘(𝑐𝑡−𝑥2) + 𝑖𝑘𝑏𝐵𝑒𝑏𝑥3𝑒𝑖𝑘(𝑐𝑡−𝑥2)
]︀
= −𝜌𝜔2𝐴𝑒𝑏𝑥3𝑒𝑖𝑘(𝑐𝑡−𝑥2)

𝜇
[︀
−𝑘2𝐵𝑒𝑏𝑥3𝑒𝑖𝑘(𝑐𝑡−𝑥2) + 𝑏2𝐵𝑒𝑏𝑥3𝑒𝑖𝑘(𝑐𝑡−𝑥2)

]︀
+ (𝜆+ 𝜇)[︀

𝑖𝑘𝑏𝐴𝑒𝑏𝑥3𝑒𝑖𝑘(𝑐𝑡−𝑥2) + 𝑏2𝐵𝑒𝑏𝑥3𝑒𝑖𝑘(𝑐𝑡−𝑥2)
]︀
= −𝜌𝜔2𝐵𝑒𝑏𝑥3𝑒𝑖𝑘(𝑐𝑡−𝑥2).

(2)

Rearranged and taking out a common factor 𝐴, 𝐵 the above equations can be written
as:

[𝑏2𝜇− 𝑘2(𝜆+ 2𝜇) + 𝜌𝜔2]𝐴+ 𝑖𝑘𝑏(𝜆+ 𝜇)𝐵 = 0,
𝑖𝑘𝑏(𝜆+ 𝜇)𝐴+ [𝑏2(𝜆+ 2𝜇)− 𝑘2𝜇+ 𝜌𝜔2]𝐵 = 0.

(3)

So that the system of two equations and two unknowns given by (3) has a non-trivial
solution, i.e. for 𝐴 and 𝐵 to be different from zero, the determinant of the system must
be zero. So it is an eigenvalue problem that determines values of 𝑏 that lead to a solution
other than the trivial one.⃒⃒⃒⃒

𝑏2𝜇− 𝑘2(𝜆+ 2𝜇) + 𝜌𝜔2 𝑖𝑘𝑏(𝜆+ 𝜇)
𝑖𝑘𝑏(𝜆+ 𝜇) 𝑏2(𝜆+ 2𝜇)− 𝑘2𝜇+ 𝜌𝜔2

⃒⃒⃒⃒
= 0.

Therefore:
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[︀
𝑏2𝜇− 𝑘2(𝜆+ 2𝜇) + 𝜌𝜔2

]︀ [︀
𝑏2(𝜆+ 2𝜇)− 𝑘2𝜇+ 𝜌𝜔2

]︀
− [𝑖𝑘𝑏(𝜆+ 𝜇)]2 = 0. (4)

Dividing the above expression by 𝜌 and taking into account the following identities:

𝜇

𝜌
= 𝑐2𝑠

(︂
𝜆+ 2𝜇

𝜌

)︂
= 𝑐2𝑝

(︂
𝜆+ 𝜇

𝜌

)︂
= 𝑐2𝑝 − 𝑐2𝑠 𝜔2 = 𝑘2𝑐2.

Equation (4) becomes:

𝑏4(𝑐2𝑠𝑐
2
𝑝) + 𝑏2

[︁
𝑘2𝑐2𝑠(𝑐

2 − 𝑐2𝑠) + 𝑘2𝑐2𝑝(𝑐
2 − 𝑐2𝑝) + 𝑘2(𝑐2𝑝 − 𝑐2𝑠)

2
]︁
+

+𝑘4(𝑐2 − 𝑐2𝑝)(𝑐
2 − 𝑐2𝑠) = 0.

(5)

The four solutions of equation (5) are:

𝑏21 = 𝑘2
(︂
1− 𝑐2

𝑐2𝑠

)︂
→ 𝑏1 = ±𝑘

√︃(︂
1− 𝑐2

𝑐2𝑠

)︂
,

𝑏22 = 𝑘2
(︂
1− 𝑐2

𝑐2𝑝

)︂
→ 𝑏2 = ±𝑘

√︃(︂
1− 𝑐2

𝑐2𝑝

)︂
.

(6)

Taking the positive roots (remember the need for the parameter 𝑏 to be positive so
that the amplitude decreases with depth and the known physical reality is fulfilled) and
substituting them in the first of the equations (3) we have:

𝑏 = 𝑏1 →
[︂
𝑘2(1− 𝑐2

𝑐2𝑠
)𝑐2𝑠 + 𝑘2(𝑐2 − 𝑐2𝑠)

]︂
+ 𝑖𝑘

[︃
𝑘(1− 𝑐2

𝑐2𝑠
)

1
2

]︃
(𝑐2𝑝 − 𝑐2𝑠)

(︂
𝐵

𝐴

)︂
= 0. (7)

Which simplified leads to a relationship between the amplitudes of the two waves
involved. (︂

𝐵

𝐴

)︂
1

= − 𝑖𝑘

𝑘(1− 𝑐2

𝑐2𝑠
)
1
2

= −𝑖𝑘
𝑏1

(8)

𝑏 = 𝑏2 →
[︂
𝑘2(1− 𝑐2

𝑐2𝑝
)𝑐2𝑠 + 𝑘2(𝑐2 − 𝑐2𝑝)

]︂
+ 𝑖𝑘

[︃
𝑘(1− 𝑐2

𝑐2𝑝
)

1
2

]︃
(𝑐2𝑝 − 𝑐2𝑠)

(︂
𝐵

𝐴

)︂
= 0. (9)

Which operating in an analogous manner leads to:

(︂
𝐵

𝐴

)︂
2

=
𝑘(1− 𝑐2

𝑐2𝑝
)
1
2

𝑖𝑘
=
𝑏2
𝑖𝑘
. (10)

Given the development, we can conclude that to solve the problem there must be a
relationship between the amplitudes 𝐴 and 𝐵 of the waves that depends on the values of
𝑏. In this way, the displacement field for this type of waves that satisfies the governing
equation is the one defined by (11).

𝑢1 = 0
𝑢2 = 𝐴1𝑒

𝑏1𝑥3𝑒𝑖𝑘(𝑐𝑡−𝑥2) + 𝐴2𝑒
𝑏2𝑥3𝑒𝑖𝑘(𝑐𝑡−𝑥2)

𝑢3 = − 𝑖𝑘
𝑏1
𝐴1𝑒

𝑏1𝑥3𝑒𝑖𝑘(𝑐𝑡−𝑥2) + 𝑏2
𝑖𝑘
𝐴2𝑒

𝑏2𝑥3𝑒𝑖𝑘(𝑐𝑡−𝑥2).
(11)
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2 Imposition of boundary conditions
To fully define the displacements, it is necessary to determine the value of the amplitudes
𝐴1 and 𝐴2 the wave number 𝑘. To do this, we will apply the boundary conditions
corresponding to the half-space 𝑥3 = 0. There are no tensions on the free surface.

𝑥3 = 0 →
{︂
𝜎23 = 0,
𝜎33 = 0.

(12)

Therefore:
𝜎23 = 𝜇

(︂
𝜕𝑢2
𝜕𝑥3

+
𝜕𝑢3
𝜕𝑥2

)︂
= 0,

𝜎33 = 2𝜇
𝜕𝑢3
𝜕𝑥3

+ 𝜆

(︂
𝜕𝑢1
𝜕𝑥1

+
𝜕𝑢2
𝜕𝑥2

+
𝜕𝑢3
𝜕𝑥3

)︂
= 0.

(13)

Substituting the derivatives of the displacement field given by expressions (11) in
equations (13) we arrive at:

𝑥3 = 0 →

⎧⎨⎩ 𝑏1

(︁
1 + 𝑘2

𝑏21

)︁
𝐴1 + 2𝑏2𝐴2 = 0;

2𝜇𝐴1 +
[︁
2𝜇

𝑏22
𝑘2

− 𝜆
(︁
1− 𝑏22

𝑘2

)︁]︁
𝐴2 = 0.

(14)

Calling 𝑐2

𝑐2𝑠
= 𝛾𝑠 and 𝑐2

𝑐2𝑝
= 𝛾𝑝 it is possible to write:

𝑘2

𝑏21
=

1

1− 𝑐2

𝑐2𝑠

=
1

1− 𝛾𝑠

𝑏22
𝑘2

= 1− 𝑐2

𝑐2𝑝
= 1− 𝛾𝑝. (15)

Expressions that substituted in (14), taking into account the expression of 𝑏1 and of
𝑏2 and after making a series of simplifications lead to the system of equations:

(2− 𝛾𝑠)𝐴1 + 2(1− 𝛾𝑝)
1
2 (1− 𝛾𝑠)

1
2𝐴2 = 0,

2𝐴1 + (2− 𝛾𝑠)𝐴2 = 0.
(16)

In order for 𝐴1 and 𝐴2 to have a value other than trivial, the determinant of the
system must be zero. This is also an eigenvalue problem, which, as we will see below,
the values of 𝛾𝑠 and of 𝛾𝑝 since both are related to each other via the elastic constants.
Therefore: ⃒⃒⃒⃒

(2− 𝛾𝑠) 2(1− 𝛾𝑝)
1
2 (1− 𝛾𝑠)

1
2

2 (2− 𝛾𝑠)

⃒⃒⃒⃒
= 0. (17)

Whose characteristic equation, taking into account the relationship 𝛾𝑝 =
𝜇

𝜆+2𝜇
𝛾𝑠, can

be written as a function of one of the variables as:

(2− 𝛾𝑠)
2 − 4

(︂
1− 𝜇

𝜆+ 2𝜇
𝛾𝑠

)︂ 1
2

(1− 𝛾𝑠)
1
2 = 0. (18)

The solution of (18) leads to the value of 𝛾𝑠 and therefore to the propagation speed 𝑐
if the properties of the medium are known.

On the other hand, through the second of the equations (16) it is possible to find a
relationship between 𝐴1 and 𝐴2:

𝐴2 = −
(︂

2

2− 𝛾𝑠

)︂
𝐴1. (19)
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If we introduce this relationship in the expression of the displacement field given by
the expressions (11) it remains as:

𝑢1 = 0

𝑢2 = 𝐴1

(︂
𝑒𝑏1𝑥3 +

2

2− 𝛾𝑠
𝑒𝑏2𝑥3

)︂
𝑒𝑖𝑘(𝑐𝑡−𝑥2)

𝑢3 = 𝐴1

(︂
−𝑖𝑘
𝑏1
𝑒𝑏1𝑥3 +

𝑏2
𝑖𝑘

2

2− 𝛾𝑠
𝑒𝑏2𝑥3

)︂
𝑒𝑖𝑘(𝑐𝑡−𝑥2).

(20)

3 Strain and stress tensors
Once the displacement field expressions are known, it is possible to determine the

strain and stress tensors. As usual, the deformation tensor is first calculated using the
compatibility equations and then the expression for the stress tensor at each point in
the half-space determined using the behavior law. Taking into account the displacements
determined in the previous section, Equations (20), the deformation tensor looks like this:

𝜀𝑖𝑗 =

⎛⎝ 0 0 0
0 𝜀22 𝜀23
0 𝜀32 𝜀33

⎞⎠ . (21)

Whose non-zero components are the following:

𝜀22 =
𝜕𝑢2
𝜕𝑥2

= −𝑖𝑘
(︀
𝐴1𝑒

𝑏1𝑥3 + 𝐴2𝑒
𝑏2𝑥3
)︀
𝑒−𝑖𝑘𝑥2 ,

𝜀33 =
𝜕𝑢3
𝜕𝑥3

= −𝑖𝑘
(︂
𝐴1𝑒

𝑏1𝑥3 − 𝑏22
𝑖𝑘
𝐴2𝑒

𝑏2𝑥3

)︂
𝑒−𝑖𝑘𝑥2 ,

𝜀23 = 𝜀32 =
1

2

(︂
𝜕𝑢2
𝜕𝑥3

+
𝜕𝑢3
𝜕𝑥2

)︂
=

1

2

(︂(︂
𝑏1 +

𝑘2

𝑏1

)︂
𝐴1𝑒

𝑏1𝑥3 + 2𝑏2𝐴2𝑒
𝑏2𝑥3

)︂
𝑒−𝑖𝑘𝑥2 .

(22)

Once the strain tensor is determined, it is possible to determine the components of
the stress tensor using the material behavior law:

𝜎𝑖𝑗 =

⎛⎝ 0 0 0
0 𝜎22 𝜎23
0 𝜎32 𝜎33

⎞⎠ . (23)

where the non-zero components are:

𝜎11 = 2𝜇𝜀11 + 𝜆𝜀𝑘𝑘 = −𝜆
(︂
𝑖𝑘 +

𝑏22
𝑖𝑘

)︂
𝐴2𝑒

𝑏2𝑥3𝑒−𝑖𝑘𝑥2 ,

𝜎22 = 2𝜇𝜀22 + 𝜆𝜀𝑘𝑘 =

[︂
−2𝜇𝑖𝑘𝐴1𝑒

𝑏1𝑥3 −
(︂
𝜆

(︂
𝑖𝑘 +

𝑏22
𝑖𝑘

)︂
+ 2𝜇𝑖𝑘

)︂
𝐴2𝑒

𝑏2𝑥3

]︂
𝑒−𝑖𝑘𝑥2 ,

𝜎33 = 2𝜇𝜀33 + 𝜆𝜀𝑘𝑘 =

[︂
2𝜇𝑖𝑘𝐴1𝑒

𝑏1𝑥3 −
(︂
(𝜆+ 2𝜇)

(︂
𝑏22
𝑖𝑘

)︂
+ 2𝜇𝑖𝑘

)︂
𝐴2𝑒

𝑏2𝑥3

]︂
𝑒−𝑖𝑘𝑥2

𝜎23 = 𝜎32 = 2𝜇𝜀23 = 𝜇

[︂(︂
𝑏1 +

𝑘2

𝑏1

)︂
𝐴1𝑒

𝑏1𝑥3 − 2𝑏𝐴2𝑒
𝑏2𝑥3

]︂
𝑒−𝑖𝑘𝑥2 .

(24)

It is possible to find a parallel between the expressions obtained for the displacement
field caused by the propagation of a Rayleigh wave and the expression (*) used to calculate
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the field caused by waves 𝑃 and 𝑆 in previous sections. If we compare the general expres-
sion of the field given by (*), concretized for the problem addressed, with those obtained
for the displacement field of a Rayleigh wave, equations (20), in terms of the vectors, the
direction cosines of the following include the displacements and the propagation direction
vectors:

𝑑(0) =

[︂
0, 1, −𝑖𝑘

𝑏1

]︂
, 𝑑(1) =

[︂
0, 1, − 𝑏2

𝑖𝑘

]︂
, (25)

𝑠(0) =

[︂
0, 1, −𝑖𝑏1

𝑘

]︂
, 𝑠(1) =

[︂
0, 1,

𝑖𝑏2
𝑘

]︂
. (26)

The complex nature of the components in the direction is noticeable 𝑥3.

4 Extension of two-dimensional expressions to the general
problem in 3 dimensions
The formulation presented so far allows us to consider a wave contained in the plane

with a generic incidence 𝑥2𝑥3. However, it does not reflect the possible incidence included
in another level. The goal of this section is to implement this possibility.

Figure 2 shows a representation of the axis system used and the relationship between
the axes previously used to solve the problem, henceforth, called (𝑥̃2𝑥̃3) and the new
generic axes (𝑥2𝑥3), (𝑥3 = 𝑥̃3):

Figure 2 Relationship between the 𝑥̃2𝑥̃3 and axes 𝑥2𝑥3.

By defining a set of unit vectors in the direction of the three Cartesian axes of the
initial problem

(︀
𝑖1, 𝑖̃2, 𝑖̃3

)︀
and another in the direction of the new ones (𝑖1, 𝑖2, 𝑖3), it can be

shown that the following relationship exists between them: 𝜙⎡⎣ 𝑖1
𝑖2
𝑖3

⎤⎦ =

⎡⎣ cos (𝜙0) sin (𝜙0) 0
− sin (𝜙0) cos (𝜙0) 0

0 0 1

⎤⎦⎡⎣ 𝑖̃1
𝑖̃2
𝑖̃3

⎤⎦ . (27)
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The matrix that relates the set of unit vectors of the initial axis system with that of
the system 𝑥1𝑥2𝑥3 is called the rotation matrix and will be denoted from now on by the
letter 𝑅.

Although the expressions are of completely general application, the parameters relative
to the wave will be used as an example 𝑆𝑉 . This is done for illustrative purposes only, and
the expressions and conclusions are completely general. In this sense, the displacement
field in the initial axis system (𝑥̃1𝑥̃2𝑥̃3) can be expressed as:

𝑢̃ = 𝑑(0)𝐴𝑖𝑛𝑐
𝑠𝑣 𝑒

−𝑖𝑘𝑠(𝑠(0)·𝑟) + 𝑑(1)𝐴𝑟𝑒𝑓
𝑠𝑣 𝑒

−𝑖𝑘𝑠(𝑠(1)·𝑟) + 𝑑(2)𝐴𝑟𝑒𝑓
𝑝 𝑒−𝑖𝑘𝑝(𝑠(2)·𝑟). (28)

Whose propagation and displacement vectors 𝑠 are 𝑑: 𝜃

𝑠(0) =

⎡⎢⎣ 0

cos (𝜃0)

sin (𝜃0)

⎤⎥⎦ , 𝑑(0) =

⎡⎢⎣ 0

sin (𝜃0)

− cos (𝜃0)

⎤⎥⎦ ,
𝑠(1) =

⎡⎢⎣ 0

cos (𝜃1)

sin (𝜃1)

⎤⎥⎦ , 𝑑(1) =

⎡⎢⎣ 0

− sin (𝜃1)

− cos (𝜃1)

⎤⎥⎦ ,
𝑠(2) =

⎡⎢⎣ 0

cos (𝜃2)

− sin (𝜃2)

⎤⎥⎦ , 𝑑(2) =

⎡⎢⎣ 0

cos (𝜃2)

− sin (𝜃2)

⎤⎥⎦ .
(29)

Premultiplying the displacement field expression by 𝑅 we obtain:

𝑅𝑢̃ = 𝑅𝑑(0)𝐴𝑖𝑛𝑐
𝑠𝑣 𝑒

−𝑖𝑘𝑠(𝑠(0)·𝑟) +𝑅𝑑(1)𝐴𝑟𝑒𝑓
𝑠𝑣 𝑒

−𝑖𝑘𝑠(𝑠(1)·𝑟) +𝑅𝑑(2)𝐴𝑟𝑒𝑓
𝑝 𝑒−𝑖𝑘𝑝(𝑠(2)·𝑟). (30)

The scalar product expression 𝑠(𝑗) · 𝑟 can be expressed as:

𝑠(𝑗) · 𝑟 =
(︀
𝑅−1𝑠(𝑗)

)︀𝑇
𝑅−1𝑟 =

[︀
𝑠(𝑗)
]︀𝑇 (︀

𝑅−1
)︀𝑇
𝑅−1𝑟 =

[︀
𝑠(𝑗)
]︀𝑇
𝑅𝑅−1𝑟 = 𝑠(𝑗)𝑟. (31)

According to this equality, it can be established that the product of the matrix 𝑅 by
the displacement field takes the value:

𝑅𝑢̃ = 𝑅𝑑(0)𝐴𝑖𝑛𝑐
𝑠𝑣 𝑒

−𝑖𝑘𝑠(𝑠(0)·𝑟) +𝑅𝑑(1)𝐴𝑟𝑒𝑓
𝑠𝑣 𝑒

−𝑖𝑘𝑠(𝑠(1)·𝑟) +𝑅𝑑(2)𝐴𝑟𝑒𝑓
𝑝 𝑒−𝑖𝑘𝑝(𝑠(2)·𝑟). (32)

Also taking into account the following equalities:

𝑢 = 𝑅𝑢̃,

𝑠(0) = 𝑅𝑠(0) 𝑑(0) = 𝑅𝑑(0),

𝑠(1) = 𝑅𝑠(1) 𝑑(1) = 𝑅𝑑(1),

𝑠(2) = 𝑅𝑠(2) 𝑑(2) = 𝑅𝑑(2).

(33)

The displacement field is finally expressed as:

𝑢 = 𝑑(0)𝐴𝑖𝑛𝑐
𝑠𝑣 𝑒

−𝑖𝑘𝑠(𝑠(0)·𝑟) + 𝑑(1)𝐴𝑟𝑒𝑓
𝑠𝑣 𝑒

−𝑖𝑘𝑠(𝑠(1)·𝑟) + 𝑑(2)𝐴𝑟𝑒𝑓
𝑝 𝑒−𝑖𝑘𝑝(𝑠(2)·𝑟). (34)

Thus, the problem can be posed in a way analogous to that performed for the plane 𝑥2𝑥3
with the exception that the vectors 𝑠 and 𝑑 are given by the expressions (33).
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5 Seismic excitation model. Incorporation of the incident field
equations into a coupled Boundary Element model.
In the models that are intended to be solved, the seismic excitation has been imple-

mented as a field of plane harmonic waves in the ground that affects the reservoir location
area from a distant point. As a consequence of the presence of the canyon, the dam and
the reservoir, the field studied for each type of wave in the previous sections, which we
have called the incident field (𝑢𝑠𝐼), is distorted. We can consider the displacement field in
the ground as the superposition of the displacement fields of two problems (figure 3). The
first corresponds to that caused by the train of incident waves on the uniform half-space
(𝑢𝑠𝐼) whose analytical expression is that obtained previously. The second represents the
field diffracted by the presence of the canyon-dam-reservoir system (𝑢𝑠𝐷). Therefore the
total field (𝑢𝑠𝑇 ) in the ground will be the sum of both (𝑢𝑠𝐼 = 𝑢𝑠𝐼 + 𝑢𝑠𝐷). In the dam, in the
impounded water and in the porous sediment, however, there is only a diffracted field,
the total field being equal to this

(︀
𝑢𝑝𝑇 = 𝑢𝑝𝐷, 𝑢

𝑎
𝑇 = 𝑢𝑎𝐷, 𝑢𝑠𝑒𝑑𝑇 = 𝑢𝑠𝑒𝑑𝐷

)︀
.

Figure 3 Seismic excitation model. Total ground field as superposition of the incident 𝑢𝑠𝐼 and
diffracted fields 𝑢𝑠𝐷.

Since the incident field is explicitly known, the problem is to calculate the diffracted
field evaluation by means of the BEM. The system of boundary element equations pro-
posed for the diffracted field in the two solid regions (soil and dam), in the fluid region
(water) and in the porous region (sediment) leads to:

𝐻𝑠 𝑢𝑠𝐷 = 𝐺𝑠 𝑡𝑠𝐷,

𝐻𝑝 𝑢𝑝𝐷 = 𝐺𝑝 𝑡𝑝𝐷,

𝐻𝑎 𝑝𝑎𝐷 = 𝐺𝑎

(︂
𝜕𝑝

𝜕𝑛

)︂𝑎

𝑇

,

𝐻𝑠𝑒𝑑 𝑢𝑠𝑒𝑑𝐷 = 𝐺𝑠𝑒𝑑 𝑡𝑠𝑒𝑑𝐷 .

(35)

For illustrative purposes, one of the boundary element networks of the system under
discussion is shown in Figure 4. The aim is to solve a symmetrical problem (with respect to
the vertical plane containing the long axis of the canyon) so that only half of the complete
geometry is displayed. Although the free surface of the ground extends to infinity, the
boundary element network only extends to a certain distance from the dam. This does
not introduce significant errors since equations (35) are written in terms of the diffracted
field that satisfies the radiation conditions. To minimize the error caused by these ground
shortenings, it is necessary to determine, through a series of numerical tests, the distance
from the dam that ensures the attenuation of the diffracted field, thereby defining the
free surface distance to be discretized. With all that has been said about the total field
in each region, equations (35) can be written in terms of the total field of displacements
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Figure 4 Boundary element model for Morrow Point Dam.

and stresses in the soil, the dam, the water and sediment as follows:

𝐻𝑠 𝑢𝑠𝑇 − 𝐺𝑠 𝑡𝑠𝑇 = 𝐻𝑠 𝑢𝑠𝐼 − 𝐺𝑠 𝑡𝑠𝐼 ,

𝐻𝑝 𝑢𝑝𝑇 = 𝐺𝑝 𝑡𝑝𝑇 ,

𝐻𝑎 𝑝𝑎𝑇 = 𝐺𝑎

(︂
𝜕𝑝

𝜕𝑛

)︂𝑎

𝑇

,

𝐻𝑠𝑒𝑑 𝑢𝑠𝑒𝑑𝑇 − 𝐺𝑠𝑒𝑑 𝑡𝑠𝑒𝑑𝑇 = 0.

(36)

The boundary conditions and interface conditions are applied to these equations, ex-
pressed as the total field. Thus, the state of zero tension is exerted on the free soil surface
and on the dam walls that do not come into contact with water. Stress balance and con-
tinuity of displacements are prescribed in the elements of the dam-soil interface. At the
interfaces between the water region and the solid region, the absence of tangential stress
in the solid and the equality of normal stress and hydrodynamic pressure in the fluid are
determined. The kinematic condition in this case is the equality of displacements in the
direction normal to the interface.

6 Treatment and implementation of field equations in problems
with geometric symmetry planes.
The code used to solve the problems posed allows, in cases where geometric symmetry

is present, in order to reduce the number of degrees of freedom and therefore reduce
the computing time, to discretize only the part necessary to define the geometry of the
problem. For example, and as previously mentioned, in the proposed Morrow Point Dam
boundary element model, there is a geometric plane of symmetry formed by the axes
running toward the canyon closure on one side and the elevation of the dam on the other
side, so that only half of the set needs to be discretized, see Figure 1.4.

Solving the problem requires solving two cases, one symmetrical and one antisymmet-
ric, since there is no symmetry in the stress (note that except in certain vertical incidence
cases, the wave does not impinge on the model symmetrically). In order to take advan-
tage of geometric symmetry, it is necessary to adapt the expressions for the incident field
developed in the previous sections to the specific case of symmetry. To do this, we start
from the generic expression for the displacement field (equation (*)):

𝑢𝑖 =
𝑛∑︁

𝑗=0

𝑑𝑗𝑖𝐴𝑗𝑒
−𝑖𝑘𝑗(𝑠

(𝑗)·𝑟). (*)
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Suppose we call the plane with respect to which geometric symmetry exists 𝑥1𝑥2, the
terms affected by the symmetry are those that contain references to the spatial coordi-
nates, in this case, the exponential terms and in particular those related to the coordinate
𝑥3. Developing the scalar product present in the exponent of the previous expression for
wave𝑗, we have:

𝑒−𝑖𝑘𝑗(𝑠
(𝑗)·𝑟) = 𝑒−𝑖𝑘𝑗(𝑠

(𝑗)
1 ·𝑥1)𝑒−𝑖𝑘𝑗(𝑠

(𝑗)
2 ·𝑥2)𝑒−𝑖𝑘𝑗(𝑠

(𝑗)
3 ·𝑥3). (37)

The last of these terms, the one affected by the symmetry conditions, can be written
as:

𝑒−𝑖𝑘𝑗(𝑠
(𝑗)
3 ·𝑥3) =

1

2

[︁
𝑒−𝑖𝑘𝑗(𝑠

(𝑗)
3 ·𝑥3) + 𝑒−𝑖𝑘𝑗(𝑠

(𝑗)
3 ·𝑥3)

]︁
+

1

2

[︁
𝑒−𝑖𝑘𝑗(𝑠

(𝑗)
3 ·𝑥3) − 𝑒−𝑖𝑘𝑗(𝑠

(𝑗)
3 ·𝑥3)

]︁
=

= cos
(︁
𝑘𝑗𝑠

(𝑗)
3 𝑥3

)︁
+ 𝑖 sin

(︁
𝑘𝑗𝑠

(𝑗)
3 𝑥3

)︁
.

(38)

In order to simplify the nomenclature, equation (38) can be written as:

𝑒−𝑖𝑘𝑗(𝑠
(𝑗)
3 ·𝑥3) = 𝑒𝑧𝑐(𝑗) + 𝑒𝑧𝑠(𝑗). (39)

where:
𝑒𝑧𝑐(𝑗) = cos

(︁
𝑘𝑗𝑠

(𝑗)
3 𝑥3

)︁
,

𝑒𝑧𝑠(𝑗) = 𝑖 sin
(︁
𝑘𝑗𝑠

(𝑗)
3 𝑥3

)︁
.

(40)

By analogy, the components not affected by symmetry (𝑥1and 𝑥2) can be written as:

𝑒−𝑖𝑘𝑗(𝑠
(𝑗)
1 ·𝑥1) = 𝑒𝑥(𝑗),

𝑒−𝑖𝑘𝑗(𝑠
(𝑗)
2 ·𝑥2) = 𝑒𝑦(𝑗).

(41)

By introducing expressions (39) and (41) the exponential of expression (*) becomes:

𝑒−𝑖𝑘𝑗(𝑠
(𝑗)·𝑟) = 𝑒𝑥(𝑗)𝑒𝑦(𝑗) [𝑒𝑧𝑐(𝑗) + 𝑒𝑧𝑠(𝑗)] = 𝑒𝑥(𝑗)𝑒𝑦(𝑗)𝑒𝑧𝑐(𝑗)⏟  ⏞  

𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑎𝑟𝑡

+ 𝑒𝑥(𝑗)𝑒𝑦(𝑗)𝑒𝑧𝑠(𝑗)⏟  ⏞  
𝐴𝑛𝑡𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑝𝑎𝑟𝑡

. (42)

Thus, the displacement field is expressed as a superposition of a symmetric and an
antisymmetric problem:

𝑢𝑖 =
𝑛∑︁

𝑗=0

𝑑𝑗𝑖𝐴𝑗𝑒
−𝑖𝑘𝑗(𝑠

(𝑗)·𝑟) =
𝑛∑︁

𝑗=0

𝑑𝑗𝑖𝐴𝑗𝑒𝑥(𝑗)𝑒𝑦(𝑗)𝑒𝑧𝑐(𝑗) +
𝑛∑︁

𝑗=0

𝑑𝑗𝑖𝐴𝑗𝑒𝑥(𝑗)𝑒𝑦(𝑗)𝑒𝑧𝑠(𝑗). (43)

Once the displacement field is determined as the sum of two problems, it is easy to
obtain the expressions for deformations and stresses using the compatibility equations
and the law of behavior of the medium with analogous decomposition.

7 Conclusion
In summary, this study successfully developed a seismic excitation model to analyze

the propagation of Rayleigh waves in a semi-infinite elastic medium. By studying the
wave’s displacement field, boundary conditions and stress-strain tensors, the research
demonstrates the complex behavior of Rayleigh waves, including their amplitude decay
with depth. The application of the Boundary Element Method (BEM), particularly using
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the example of Morrow Point Dam, highlights the utility of geometric symmetry in sim-
plifying computational requirements. Overall, this research provides fundamental insights
into seismic wave behavior in elastic media that are critical for applications in geophysics
and earthquake-resistant design.
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МОДЕЛЬ СЕЙСМИЧЕСКОГО ВОЗБУЖДЕНИЯ
ПОЛУПРОСТРАНСТВЕННОГО РАСПРОСТРАНЕНИЯ

ВОЛН РЭЛЕЯ
Холмуродов А.Э., *Матанов М.Ч.

*mm939011166@gmail.com
Каршинский государственный университет,

730003, Узбекистан, г. Карши, ул. Кучабаг, 17.

В этой статье представлено научное исследование сейсмических колебаний и
моделей распространения волн Рэлея. В исследовании подробно описывается, как
волны Рэлея распространяются в полубесконечной упругой среде, типы движений,
которые они создают на поверхности Земли, и как их амплитуда уменьшается с
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глубиной. В первом разделе исследования рассматриваются волны Рэлея и их ма-
тематические представления, иллюстрирующие, как эти волны формируются и рас-
пространяются в полубесконечной среде. Кроме того, соотношения между амплиту-
дой волны и другими параметрами выражаются математическими уравнениями. В
следующих разделах рассматривается проблема определения упругих свойств сре-
ды с учетом граничных условий. В исследовании представлен анализ деформаций
и тензоров напряжений, обсуждается их роль в распространении волн и подробно
описываются компоненты напряжения и деформации в каждой точке. Для реше-
ния задач с геометрической симметрией используется метод граничных элементов
(BEM). Используя в качестве примера модель плотины Морроу-Пойнт, исследова-
ние объясняет, как этот подход помогает сократить вычислительные затраты за
счет учета плоскостей симметрии. В нем также описывается баланс гидродинами-
ческого давления и нормальных напряжений на границе раздела между водой и
твердыми средами. Эта статья служит ценным ресурсом для понимания математи-
ческих и физических принципов, вычислительных подходов и граничных условий
в распространении волн, которые имеют решающее значение для геофизических
приложений. Наконец, в исследовании подчеркивается, как амплитуда волн Рэлея
изменяется с глубиной в полубесконечной среде, и обсуждается важность упругих
констант в управлении этими изменениями. Это исследование дает важные теоре-
тические идеи, полезные для геологической и инженерной практики.

Ключевые слова: сейсмические колебания, поверхностные волны, вычислитель-
ная модель, упругая среда, тензоры напряжений и деформаций, геометрическая
симметрия, гидродинамическое давление, падающие и дифрагированные поля.

Цитирование: Холмуродов А.Э., Матанов М.Ч.Модель сейсмического возбужде-
ния полупространственного распространения волн Рэлея // Проблемы вычислитель-
ной и прикладной математики. – 2024. – №6(62). – С. 45-56.
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