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В данном исследовании анализируются индексы хлорофилла в растениях как
индикаторы наличия фитопатогенов и абиотического стресса. Особое внимание уде-
ляется идентификации ранних признаков заражения земляники паутинным клещом
с анализом уровня пигментов растения и использованием методов машинного обу-
чения. Измерение индексов хлорофилла A, B и общего хлорофилла, необходимых
для выявления степени влияния стрессового фактора на растение, проводилось с ис-
пользованием спектрометра CI-710s. Анализ данных о содержании хлорофилла поз-
волил определить начало стрессового состояния растения. Применение алгоритмов
машинного обучения к табличным данным значительно повысило эффективность
диагностики и предсказания рисков развития заболеваний.
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1 Введение
Интеллектуальный мониторинг значительно повышает устойчивость и эффек-

тивность сельского хозяйства. Интеграция интеллектуальных систем мониторинга и
управления, основанных на машинном обучении, революционизирует аграрный сек-
тор, переводя его от традиционных методов к точному земледелию, управляемому
данными. Этот подход использует машинное обучение и аналитику больших данных
для мониторинга состояния сельскохозяйственных культур и условий окружающей
среды в режиме реального времени, что позволяет осуществлять точное орошение,
внесение удобрений и борьбу с вредителями [1, 2].

Интеллектуальная система на основе машинного обучения анализирует данные
о вспышках болезней и нашествиях вредителей, позволяя агрономам и фермерам
принимать превентивные меры защиты [3]. Паутинные клещи являются серьезными
вредителями земляники, которые приводят к значительным потерям урожая. Со-
временные методы машинного обучения могут существенно улучшить процесс диа-
гностики состояния растений, предоставляя возможности для раннего обнаружения
и предотвращения распространения заболеваний. Используя данные о содержании
хлорофилла и других физиологических показателях, применением алгоритмов ма-
шинного обучения, как метод случайного леса, можно эффективно анализировать
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большие объемы информации, выявляя закономерности, указывающие на начало
стресса или заболевания растений. Данный подход не только повышает точность ди-
агностики, но и сокращает время, необходимое для реакции на угрозы, что является
ключевым фактором для поддержания устойчивости и продуктивности сельскохо-
зяйственных культур.

Методы машинного обучения делают сельское хозяйство более оперативным,
адаптивным и менее ресурсоемким. Несмотря на трудности внедрения новых техно-
логий, включая высокую стоимость и технические сложности, преимущества интел-
лектуальных систем значительны: повышение урожайности, снижение воздействия
на окружающую среду и финансовая стабильность фермеров [4].

Таким образом, интеграция машинного обучения и передовых аналитических ме-
тодов открывает новые возможности для агрономии, предоставляя фермерам ин-
струменты для более точного и своевременного управления здоровьем растений.
Раннее обнаружение стрессовых факторов, влияющих на урожайность и качество
продукции, является важной задачей, решаемой методами машинного обучения [5].

2 Связанные работы
В многочисленных исследованиях неоднократно демонстрировалась возможность

оценки состояния растительных ассоциаций по спектральному вегетационному ин-
дексу NDVI [6]. Однако уровень хлорофилла и ряд других физиологических пара-
метров, измеренных физически, а не дистанционно, могут показать более точный и
быстрый результат по наличию абиотического стресса у растений, вызванного фи-
топатогенами [7, 8]. Кроме того, стоит отметить, что в настоящее время всё чаще ис-
пользуется машинное обучение для решения сложных задач, в которых взаимосвязи
и закономерности заранее не определены. Возможности алгоритмов машинного обу-
чения при разработке моделей, направленных на прогноз заболеваний, демонстри-
руются исследователями во многих работах (например, [9]). Можно сделать вывод,
что использование машинного обучения имеет огромный потенциал и отличные пер-
спективы при изучении физиологии растений, которые явно реагирует на различные
виды стресса (засуха, засоление, внедрение патогена), например, изменяя форму ли-
ста или уровень хлорофилла в листьях [10].

Внедрение новых цифровых и интеллектуальных технологий играет важную роль
в области защиты растений. Так, авторы [11] показали возможность использования
нейронной сети в качестве программного ядра online-систем дистанционного фитоса-
нитарного мониторинга растений. Они использовали индекс когнитивной значимости
(CSI) для определения инфицирования растений фитопатогенной микрофлорой.

Разработаны модели заболевания растений в системы типа «вредитель - расте-
ние» [1]. В работе авторов Nguyen, C., et al разработана модель глубокого обучения с
помощью гиперспектральной визуализации выявление вирусных заболеваний расте-
ний. В исследованиях [4] проведен анализ влияния абиотического стресса на уровень
хлорофилла и предложены методы диагностики с использованием алгоритмов ма-
шинного обучения.

Известно [8], что наиболее используемая модель в машинном обучении являет-
ся модель случайного леса. В работах [5] и [12] предложены модели, использующие
случайный лес и нейронные сети для классификации состояния растений по спек-
тральным данным. В статье [13] исследовалось применение алгоритмов глубокого
обучения для классификации овощных трипсов и паутинного клеща на ранних ста-
диях заражения растений.
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Вышеуказанные работы подтверждают тот факт, что применение алгоритмов ма-
шинного обучения предоставляет возможность осуществлять мониторинг и управле-
ние развитием растений. Однако требуются большие объемы данных, имеющихся
в свободном доступе, или собственные результаты, полученные в контролируемых
условиях с использованием высокоточного дорогостоящего оборудования.

3 Методы
Для разработки модели машинного обучения по предсказанию наличия фитопа-

тогенов на основе спектральных данных необходим набор данных. Получение до-
стоверных результатов проведено неразрушающим методом измерения уровней хло-
рофилла растений. В качестве исследуемых растений выбрана земляника садовая
(Fragaria × ananassa Duch.) сорта Мурано, выращенная в лабораторных условиях
Института экологической и сельскохозяйственной биологии (X-BIO) Тюменского го-
сударственного университета с марта по сентябрь 2023 года. Растения выращивались
методом гидропоники в пластиковых горшках на минеральной вате в фитотроне.
Полив осуществлялся минеральными удобрениями по технологической карте, раз-
работанной сотрудниками лаборатории. Экспериментальные условия поддержива-
лись следующим образом: температура воздуха 18± 2∘𝐶, относительная влажность
18 ± 10%, фотопериод 16:8 часов (свет:темнота). Для создания условий абиотиче-
ского стресса растения заражались атлантическим паутинным клещом (Tetranychus
atlanticus McGregor, 1941).

Сбор данных о состоянии растений проводился ежедневно с помощью спектро-
метра CI-710s (CID Bio-Science, США). Измерялись уровни хлорофилла A (CPHLA),
хлорофилла B (CPHLB), общий хлорофилл (CPHLT), индексы отражения каротино-
идов (CRI1 и CRI2) и водный индекс (WBI). Все собранные данные экспортировались
в формат CSV для последующей обработки.

Для анализа данных использовался программный пакет Python с библиотеками
Streamlit, pandas, matplotlib, seaborn и scikit-learn. Библиотека Streamlit применялась
для создания интерактивного веб-приложения, позволяющего пользователям загру-
жать данные и следить за моделированием в реальном времени. Для классифика-
ции данных использовалась модель случайного леса (Random Forest Classifier) из
библиотеки scikit-learn. Выбор алгоритма связан с высокой точностью и способно-
стью работать с большими объемами данных, что делает его особенно подходящим
для задач, связанных с классификацией [8]. Разделение данных на тренировочный
и тестовый наборы проводили с помощью функции train_test_split, что позволило
оценить надежность модели на независимых данных.

Модель случайного леса объединяет результаты нескольких деревьев решений,
что снижает вероятность ошибок в предсказаниях. Основное уравнение модели:

𝑦 − 1𝑖

𝑛𝑡𝑟𝑒𝑒𝑠

=
∑︁𝑛𝑡𝑟𝑒𝑒𝑠

𝑖−1
𝑇𝑖 (𝑥) , (1)

где 𝑇𝑖(𝑥) – результат предсказания одного дерева, 𝑛𝑡𝑟𝑒𝑒𝑠 – количество деревьев в лесу,
𝑥 – входные данные.

Важность каждого признака оценивается суммированием его вклада во всех де-
ревьях модели:

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 =
∑︁𝑛𝑡𝑟𝑒𝑒𝑠

𝑖−1
𝐼 (𝑇𝑖,𝑓) , (2)

где 𝐼(𝑇𝑖𝑓), – вклад признака 𝑓 в дереве 𝑇𝑖.
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Для оценки качества модели использовалась матрица путаницы, которая позволя-
ет оценить количество истинно положительных (TP), истинно отрицательных (TN),
ложноположительных (FP) и ложноотрицательных (FN) предсказаний. На её основе
вычисляются ключевые метрики:

Точность − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑅 + 𝐹𝑁
, (3)

Полнота −𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (4)

Погрешность − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. (5)

ROC – кривая (Receiver Operating Characteristic). ROC – кривая строится на ос-
нове соотношения истинно положительных и ложноположительных предсказаний:

TPR (True Positive Rate) – доля истинно положительных

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (6)

FPR (False Positive Rate) – доля ложноположительных:

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
, (7)

AUC (Area Under the Curve). Площадь под ROC – кривой (AUC) используется
для оценки качества модели:

𝐴𝑈𝐶 =

∮︁
1
0𝑇𝑃𝑅 (𝐹𝑃𝑅) 𝑑 (𝐹𝑃𝑅) . (8)

Для визуализации данных и результатов модели использовались библиотеки
matplotlib и seaborn. Было разработано интерактивное веб-приложение на основе
библиотеки Streamlit, позволяющее загружать и обрабатывать новые данные, изме-
нять параметры входных данных и наблюдать влияние изменений на предсказания
модели в реальном времени.

Рис. 1 Схема сельскохозяйственной системы мониторинга и управления для анализа уров-
ня хлорофилла в листьях растений
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4 Результаты

Модель случайного леса продемонстрировала высокую точность в предсказании
наличия фитопатогенов на основе спектральных данных о хлорофилле и других фи-
зиологических параметрах растений. Важность признаков была оценена с помощью
метода случайного леса, что позволило выявить основные индикаторы стресса у рас-
тений, вызванного фитопатогенами (рисунок 2).

Рис. 2 Важность признаков для модели случайного леса

Из рисунка 2 видно, что наибольший вклад в предсказание модели вносит уровень
хлорофилла B (CPHLB), что согласуется с результатами других исследований [13],
показывающих его высокую чувствительность к абиотическим стрессорам. Далее
следуют индексы отражения каротиноидов CRI2 и CRI1. Меньшее влияние оказы-
вают общий хлорофилл (CPHLT), хлорофилл A (CPHLA) и водный индекс (WBI).

Важность признаков для модели случайного леса помогает понять, какие физио-
логические параметры растений более важны для определения наличия патогена.
Это может быть полезно для агрономов и исследователей, желающих оптимизиро-
вать процесс диагностики и выявления болезней в растениях, а также для дальней-
шего усовершенствования модели.

На рисунке 3 представлена матрица путаницы и ROC-кривая модели.
Модель, верно, предсказала 9 случаев отсутствия патогена (истинно отрицатель-

ные) и 11 случаев наличия патогена (истинно положительные). Были зафиксированы
2 ложноположительных и 1 ложноотрицательное предсказание, что свидетельству-
ет о высокой точности модели с минимальными ошибками в предсказаниях. Клю-
чевой показатель — AUC, равный 0.97, указывает на высокую чувствительность и
специфичность модели при предсказании наличия патогенов растений, ось 𝑋: до-
ля ложноположительных срабатываний (FPR), ось 𝑌 : доля истинноположительных
срабатываний (TPR).
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Рис. 3 График матрицы путаницы (а) и ROC-кривая (б): черная пунктирная линия - слу-
чайные предсказания, синяя линия - производительность модели

Исследование выполнено при финансовой поддержке Российского научного фон-
да в рамках проекта № 23-76-01011 (https://rscf.ru/project/23-76-01011/).

5 Заключение
В исследовании показано, что использование методов машинного обучения, таких

как случайный лес, позволяет эффективно выявлять фитопатогены на ранних ста-
диях на основе спектральных данных о содержании хлорофилла и других физиоло-
гических показателях растений. Результаты анализа важности признаков, матрицы
путаницы и ROC-кривой демонстрируют высокую точность и эффективность пред-
ложенной модели.

Рекомендовано дальнейшее использование предложенной методологии в реаль-
ных агрономических условиях для мониторинга состояния сельскохозяйственных
культур, что может способствовать своевременному обнаружению и предотвраще-
нию распространения заболеваний, а также повышению урожайности.
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His study analyses chlorophyll indices in plants as indicators of the presence of phy-
topathogens and abiotic stress. Special attention is given to the identification of early
signs of strawberry spider mite infestation by analysing plant pigment levels and using
machine learning methods. The measurement of chlorophyll A, B and total chlorophyll
indices, which are necessary to identify the degree of effect of stress factors on the plant,
was carried out using a CI-710s spectrometer. Analysis of the chlorophyll content data
allowed the onset of plant stress to be determined. The application of machine learning
algorithms to the tabular data significantly increased the efficiency of the diagnosis and
prediction of the risk of disease development.
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