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A multidimensional mathematical model of simultaneous heat and moisture transfer
processes in inhomogeneous porous bodies is proposed, considering internal heat and
moisture release, heat and moisture exchange with the environment. Based on the usage
of an implicit finite-difference scheme with the second order of precision in time and space
variables, an effective numerical solution for resolving issues has been created. Based on
the developed numerical algorithm the software was created for studying and analysing
the processes of heat and moisture transfer during the storage and drying of raw cotton
in open areas which makes it possible to identify and forecast changes in temperature
and humidity at arbitrary points of cotton.
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1 Introduction

Scientific research in mathematical modelling, numerical methods, and the develop-
ment of software and tools for solving issues with heat and moisture transport in porous
materials is being successfully applied widely. In addition to producing more accurate
predictions of changes in agricultural product indicators like internal temperature and
humidity, these studies can provide qualitatively new information about the processes
under investigation and lead to technological advancements in equipment and techniques
to improve the conditions for agricultural product processing and storage in open areas
under the influence of solar radiation.

The problems of developing the theoretical foundations and methodology for mod-
elling complex processes of heat and mass transfer are devoted to the work of a num-
ber of prominent scientists, such as A.V. Lykov, Yu.A. Mikhailov [1], P.V. Akulich,
N.N. Grinchik, [2|, LI.YT and Zhu.Qingyong [3], D.A.Nield and A.Bejan [4] and oth-
ers. Problems of mathematical modeling of the processes of simultaneous heat and mois-
ture transfer, drying and storage of various materials are considered in the works of
A.Afanasyev, B.Siplivy [5], N. Ravshanov [6], A.Mamatov, A.Parpiev and A.Kayumov [7],
[.Togrul,D.Pehlivan [§], T.J.Afolabi and S.E.Agarry [9], V.Patel et al., [10], N.Wang and
J.G.Brennan [11], G.Arunsandeep, V.P.Chandramohan [12] et al. The Philippe and De
Vries model [13], A.V.Lykov [14], and Whitaker [15] are now the most commonly studied
models used to describe the processes of heat and moisture transfer in capillary-porous
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media. The ideas of Fourier’s law of heat conduction, Fick’s law of gas diffusion, Darcy’s
law of liquid diffusion, and mass and energy conservation were used to build these models.
One feature of these models is the ability to include control potentials, including partial
pressure, relative humidity, and water content in porous bodies. A set of partial differen-
tial equations presented by A.V.Lykov describes the processes of linked heat and moisture
transfer inside a wet porous body during drying and has the following form [14]:

ou

- = (111V2U + &12V2T; (1>
or

T
a— = CLQQVQT + CL21V2U, (2)
or

where coefficients a1, ais, age, as; are determined by the relations:

ay = Ay = % — diffusion coefficient of moisture;

a1y = a, a,0 — coefficient of thermal diffusion of wet bodies;

agy = a+al 12 = 21 +al 12 — coefficient of diffusion of heat;

Q91 = Q122 — coefficient of thermal diffusion of wet bodies;

ri9 — capillary radius; 0 — relative moisture thermal diffusion coefficient, usually ex-
perimentally determined by the formula § = ==.

Jen Y. Liu’s [16] proposed an analytlcal méthod for solving the A.V.Lykov heat and
mass transfer equations with time-dependent boundary conditions. The solution consists
of the sum of solutions of inhomogeneous equations. Only specific solutions change as the
boundary conditions vary, while the homogenous solutions stay unchanged. Numerical
findings on the drying of a porous material example demonstrate that drying times and
heat absorption can be shortened until the required moisture content is attained by con-
currently increasing temperature and decreasing the equilibrium mass transfer potential
over time.

The paper [17]| presents a two-dimensional model for the investigation of heat and
moisture transmission across porous wood construction materials. A non-stationary cou-
pled model for heat transfer and moisture exchange in low-temperature wood materials
is presented by researchers. Next, using an implicit iterative method, the two non-linear
partial differential equations arising from the coupled model are numerically solved. Nu-
merical results of the prospective temperature and humidity change are compared with
experimental values published in the scientific literature.

This [18] study offers a mathematical formulation of difficulties concerning the impact
of a concentrated source on the surface of a half-space in both two- and three-dimensional
formulations, as well as the influence of a volumetric heat source in an infinite space.
A method is developed to address the issue of a consistent, concentrated heat source.
Using the superposition principle and the influence function of the volumetric source, the
solution is derived in integral form. A comparison is made with classical solutions in the
case of a parabolic type heat equation. It is demonstrated that accounting for the finite
speed of thermal waves only has a major impact on the heating process during the initial,
comparatively brief phase of exposure to the heat source.

Cotton seed open sun drying has been studied experimentally and reported in the
research work [19]. Using the hot air oven method, the initial moisture content of cot-
ton seeds was assessed to be 14.65% wet-basis. The drying process reduced the moisture
content from 14.65% to 6.37% wet basis in 20 hours. It happened during a declining
rate phase without a steady rate period. In order to choose the best drying model for
sun-drying cotton seeds, experimental moisture ratio findings were fitted with anticipated
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moisture ratio values.The work of the aforementioned scholars as well as many other
researchers has made it possible to comprehensively analyze the processes of heat and
moisture exchange that occur during the processing and storage of agricultural products.
The development and improvement of mathematical models that take into consideration
the effects of external and internal phenomena, such as solar radiation, ambient temper-
ature and moisture, and self-heating, which have a major influence on the processes of
heat and moisture exchange in cotton, has not yet received enough attention.

2 Problem statement

The most inclusive set of equations are (1) and (2), which apply to drying porous wet
materials as well as all types of heat and moisture transfer. The object of the study is
a bundle of raw cotton stored in an open space which has a shape close to a rectangular
parallelepiped, the upper boundaries of which communicate with the environment, and
the lower boundary is thermally insulated.

The following system of differential equations is proposed as a mathematical model
of simultaneous heat and moisture transfer in the heterogeneous porous medium, which
takes into account moisture and heat exchange with the environment, sources of heat and
moisture release inside the body, and flow solar radiation:

g_T = div (a VT) + div (§ Vu) + f, (3)
-
ou , .
3= div (0 Vu) + div (aVT) + ¢ (4)
-
with initial
T (z,y,2,0) =To (z,y,2); u(z,y,20)=uo(z,y,2) (5)
and boundary conditions
or
)\18_ = _61 (Toc =T (07 Y, =, T)) - UPVR (T) ; (6)
T =0
oT
)\18_ = —51 (Toc -T (L:m Y, z, T)) - UPVR (T) ; (7)
Z =Ly
oT
Mool = =By (Lo = T (2,0,2,7)) = npyR (1) (8)
Y ly=0
aT
Mool =B (Toe =T (2, Ly, 2, 7)) = 1py R (7) 9)
Yy y=Ly
oT
e 0; (10)
aor
18_ - _51 (TOC_T(x7y7LZ7T)) —UPVR (7—); (11)
“ z=L,
0
28_” = _62 (uoc_u(oayazyT»; (12)
=0
0
)\28_?; 2=Ly N _52 (uoc_u(Lﬂmy’Z’T)); (13)
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ou
Qa_y o - _62 (UOC—U(LL’, 07277—))7 (14)
2@ = _52 (UOC—U(.CE,Ly,Z,T)); (15)
9,0,
ou
5 o - 07 (16>
0
>\2_u = _62 (Uoc—u(l’;nyzaT))- (17)
0z,

Here T'(x,y,z,7) — is the temperature at the point (z,y,z) € Q at time 7 > 0;

u(z,y,z,7) — change of moisture over time; a(z,y,z) — coefficient of thermal diffusiv-

ity; 0(z,y, z) — coefficient of moisture conductivity; V = {8%, a%, %} — nabla operator;

f(x,y,z,7) = b-e ® — is the intensity of the internal heat release of the mass; b =
= o - heat release coefficient; ¢; — specific heat capacity; a — empirical parameter;
q(z,y,2,7) = pmoe~ ST — the intensity of internal sources of moisture, at constant values
of the density of the material — p; £ — drying coefficient; my — maximum evaporation rate;
B1 — heat transfer coefficient; T,. — ambient temperature; n — coefficients for carrying out
the boundary condition to the dimensional form; v — absorption coefficient; R (1) — flux
of solar radiation; (85 — coefficient of moisture return; u,. — ambient humidity.

The processes of heat and moisture transfer in heterogeneous porous media during the
storage and drying of bodies can be studied, observed, and predicted using a mathematical
model of this kind. This model accounts for the heterogeneity of the medium, heat and
moisture exchange with the environment, daily variation in solar radiation, and internal
heat and moisture release of the porous body.

3 Solution method

As the issue description makes clear, the target of research is characterized by a system
of partial differential equations with a source of heat and moisture release, making an
analytical solution challenging. In light of the aforementioned, for solving problems (3)
through (17) we used the finite difference approach with the second order of precision in
time and space variables, replacing the region of the continuous solution with a grid.

Let’s introduce the space-time grid:

Quyer = {(zi =iz, y; = jAY, 2 = kAz, 7, =n AT);
Z:l,Nza j:17My7 kzl,Lz,n:O,NT, AT:l/NT}

and replace the differential operators of equation (3) with difference operators in Oz:

1 1
LTE =T 1T — Thgw
2 A7/3 2 AT/3 B
1 1 1
B ai+0,5,j,k7ﬁ:§,§j’k — (@it05,5k + Gi054k) Tlnjf + a¢—0,5,j,k7ﬁ+1,§j,k
N Ax? *
Aijrosk e — (@igrose + aij—osk) T5p + @igos k1] 14
+ N +

n n n
+ai7j7k+075Ti7j,k+1 — (@ijkr0s + Qigr—o5) T + @ijr—05T7 51

Az?
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n n n
Air05,5 kU1 jx — (@ir05.5k T Qic055k) Ui g + Qim055kU7 1

_l’_
Ax?
n n n
Wi 058U 1 — (@igrosk + Qij—05k) Ui g + Qij—05 kU751 13
+ A + (18)
n n n
@i, 0,587 g o1 — (i eros + Qije—05) Uiy + ai,j,k*0,5uz’,j,k—1 ntl
+ A2 f Jik

Grouping like terms, we obtain a system of tridiagonal algebraic equatlons:

n+i n+i
aragwTins = bragaTine + cragaTims s = —draogh. (19)
Further, we approximate the boundary condition (6) with respect to Oz and obtain:

8Ty +4TL) — Ty ntd ol (20)
Al AL ::__5ljzc+_517h$k —¢p 3

where ¢ = npyR (7).
From the system of equations (19), when i = 1, we get

nt+i n+i n+i

arkloje —bragetijn + cragels i = —drk- (21)
1 1
Putting T;;r,j from (21) into (20), we find T(;;.t,j’:
+7
Tongk _O‘TO,Jlejk + 87,0,k (22)

where the sweep coefficients aryg ;x, B0,k are calculated using the formulas:

Aibr 1.5,k — d\cr 1,5,k
arq,j e — 3crj e — 2A8zery kﬁ1
nl
—drp i M — 28zcr kP Toe — 28xCr jp" s

ar,jkA — 3crapd — 28zer kb

QT.0,5k =

BT,O,j,k =

Similarly, approximating the boundary condition (7) with respect to Ox, we obtain:

n+x n+x n+x
TNfgjk 471 i]k4_3T‘ji n+ +1 23
Al I ::_¢%2}c+_61 N]i ¢n 3. ( )

where ¢ = npyR (7).
Applying the sweep method for the sequence at N, N —1 and N — 2, we find T ik

n+—
and T3 5.k

n+— n+x
Ty {5 =arN-15kTN %+ BrN-1k (24)
n-‘y-l n+l
TN—SJ,]{I = aT)N_27j7kaTyN_17]7kTN7]7:;€ + O{T7N_2)],k/6T7N_17‘77k + /BTaN_27j7k‘ (25)

1 n+i n++
Putting T}, from (24) and Ty 3, from (25) to (23), we find Ty ;3

Jr,
Tn+§ _)\104T,N72,j,kﬁT,N71,j,k - )\IBT,N72,j,k + 4)\15T,N71,j,k — 208251 T,c — 2Ax"
Nk —
) 3A = 2Ax6) + Mar N_2j k0T N1k — AN QT N1k

(26)
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1 1 1
The values of the temperature sequence T;\;J:i' i L ;}t; ik e T: ;r,f are determined by
the method of back-sweep by decreasing i:
+l +; . ~ .
T:j,kg = aT,i,j,kﬂilfj,k + BTyi,j,k, 1=N—-1,1, j=0, M, k=0, L. (27)

Similarly, equation (4) is approximated by Ox finite difference relations and grouping
similar terms, we obtain a system of tridiagonal algebraic equations with respect to the
required variables:

n+3 n-i-f +3
Qi g,k Wi q 1,5,k bu jirgik Uy Js k + Cy ,dk uz—i—l T k= du,i,j,k'

(28)

Further, we approximate the boundary condition (12) with the second order of accu-
racy in Ox and obtain:

n+% n+% n+§
—Bug g AU g Uagk +1 29
2 QAQZ' ﬁQuoc + BQUO’J k-

From the system of equations (28), for i = 1, we get:

1 1

+* n+3 n+
Gtk Yo g = Dutk Uy + Cutgk Us i = —du gk (30)
nti
Putting u2j 3 from (30) into (29), we find the value of uy ; ;-
n—i—% o n—i—% (31>
uO,j,k = Oy, 0,5,k ul,j,k + Bu,O,j,k'

From relation (31), the sweep coefficients are determined as:

)\Qbu,l,j k — 4)\20u 1,4,k
au,l,j,k)\Z 3¢y, 1,7, kA2 — 2A$Cu,1,j k52
—dy,1,5 502 — 2AxCy 1 1 B2Uoc
au,l,j,k>\2 - 3Cu,1,j,k>\2 - 2chu,1,j,kﬁ2.

Cau707j7k =

/8u707j7k =

Similarly, approximating the boundary condition (13) with respect to Oz, we obtain:

n—i—— n—i—% n—i—%
N 20 — AN+ 3Nk 3 B3 (32)
2 Az = —P2Uoc + P2y ;-

L
Applying the sweep method for the sequence N, N —1 and N — 2, we find u Nt?)l ik and

n-‘,-f
Upn_ 2,] k-

nt+i n+—
3
Uy ik = QuN-15kUy %+ Bu,N-15k; (33)

n+— TL+%
Uy = Qu,N=2,jkCu,N—1,j,k Uy ;% + CuN=2,jkBu,N-15k + Bu,N=2,jk- (34)

1 nal
Putting u?v+_317j7k from (33) and u]\;r_?’%.’,C from (34) to (32), we find uNj;k

ntt =X N2 jkBunN—1jk — ABun—2jk T AN PuN_14k — 280 B2U0,
, IC .
N.g, 3Xe — 2Ax55 + Aoy N—2,j kQuN—1,5k — N2 N_1 jk
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. n+x n+x nt+i .
The values of the moisture sequence uy % ;, Un_ % ;xs - Uy jpare determined by the

back-sweep method to decrease :

1 1
n+3 n+3

Uy p = Qg Wiy g+ Buijk, wheret =N —1,1, j=0, M, k=0, L.

Further, a similar action is performed by on n+ % time layer, and then by Oz on n+1
time layer, we find 77"/}

— = = = n+1
w1 MO L—2Bri i — MBrijro T 4MNBri i — 2820 Tc — 2Az¢
Z’7j7L - '

3\ — 2AzB1 + Miair, j -2 Qi jn—1 — 41 L1

n+l _ = n+1 2
I =arije L + Brigie s

i=0,N, j=0,M, k=1L —1, 1.

n+1.,

Accordingly, we get ;7

ntl —)\zau,i,j,Lﬂﬁu,i,j,Lfl B )‘25u7i,j,L72 + 4)‘25u,i,j,L71 — 202354

i, L = = =
Ao — 20285 + AoCuu i j1—200i5,1—1 — 4Ny i j -1

n+l _ = n+1 el . . _
U = Quik Uy oy + Bujps Where i =0, N, j=0, M, k=L-1, 1.

In order to handle the three-dimensional problem of coupled heat and moisture trans-
fer during the storage and drying of an inhomogeneous porous body, an efficient stable
numerical solution based on the high-order precision finite-difference approach has been
devised.

4 Results

Based on the proposed mathematical model and numerical algorithm, the object-
oriented software program "HMTCotton"was built in C# to monitor and predict the
processes of simultaneous heat and moisture transfer during the drying and storage of
raw cotton in open areas.

Since the harvesting of cotton is seasonal, this raw cotton is stored in open space for
a certain period. Raw cotton is used to form rectangular parallelepiped, covered with
a tarpaulin on top. To enhance ventilation, form a through-the-hole. With long-term
storage, the commercial quality of raw cotton is lost, and there are cases of its spontaneous
combustion. In this regard, temperature and moisture prediction and determination of
the maximum allowable storage periods are essential to the storage technology of raw
cotton.

Computational experiments were carried out for September 2023 in the Bukhara re-
gion, where the average ambient temperature was +25°C (+36°C during the day, +18°C
at night), and the average ambient humidity was 36% (28% during the day, 44% at night).
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Figure 1 Change in temperature in the riot of raw cotton in three dimensions after 10 days of
storage. T,. = 35°C, T (x,y,2,0) = 43°C, upe = 36%, u(z,y,z, 0) = 44%

Figures 2-5 show layers that show the results of numerical calculations performed on
a computer to give a visual representation of temperature and moisture changes in raw
cotton.

Numerical experiments were carried out at various values of thermal diffusivity, mois-
ture conductivity, various values of humidity and temperature of cotton riot including its
properties. The size of the riot of raw cotton is taken as L, =12 m; L, =15 m; L, =
= 8 m. The cotton riot is erected so that the large sides of the rectangle are parallel to
the north-south lines.

10

Y Axis

Figure 2 Shows the temperature change in a riot of raw cotton after 10 days in a layer at z = bm.
To. = 37°C, T (z,y,2,0) = 45°C, wupe = 36%, u(x,y,2,0)=42%
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¥ Axis

Figure 3 Shows the humidity change in a riot of raw cotton after 10 days in a layer at z = bm.
Tpe = 37°C, T (z,y,2,0) =45°C, upe = 36%, u(z,y,z,0)=42%

Figures 2-3 display the findings of the computational experiments on how temperature
and moisture change along a plane based on z and y. The temperature climbs to 43°C
over time, while the humidity inside the cotton remains at 42%.

After 30 days of storage, because of internal heat and moisture release, the cotton
temperature rises to 52°C and its humidity reaches 55% (Fig. 4-5). Due to the increase
of humidity and temperature in the interior part of the cotton, in practice, wet air is
pumped out of the raw cotton using a ventilation unit.

52
50
43
46
44
42
40
38

10

Y OAxis

] 2 4 G a 10 12 14

Figure 4 Shows the temperature change in a riot of raw cotton after 30 days in a layer at z = 6m.
To. = 35°C, T (z,y,2,0) =52°C, wupe = 36%, u(x,y,z2,0)=42%
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Figure 5 Shows the humidity change in a riot of raw cotton after 30 days in a layer at z = 6m.
Tpe = 35°C, T (z,y,2,0) =52°C, upe = 36%, u(zx,y,z0)=42%

In October, when the average ambient temperature was +20°C (427°C during the
day, +13°C at night), and the average ambient humidity was 53% (44% during the day,
62% at night), wet air influences to the surface of cotton no more then inside.

Computational investigations show that the intensification of heat transfer between the
cotton riot and the surrounding atmospheric air causes the cotton riot peak temperature
to climb by at least 17°C after 30 days. Because of this, the raw cotton riot’s porous bulk
can attain maximum temperatures of up to 71°C at certain regions (Fig.6-7), which is
hot for modern storage techniques.

12

10

¥ OAxis
[=3]

X Axis

Figure 6 Shows the temperature change in a riot of raw cotton after 30 days in a layer at z = 6m.
To. = 35°C, T (z,y,2,0) =52°C, wupe = 36%, u(x,y,z2,0)=42%
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Figure 7 Shows the temperature change in a riot of raw cotton after 60 days in a layer at z = bm.
Tpe = 29°C, T (z,y,2,0) = 38°C, wupe = 36%, u(zx,y,z0)=42%

Raw cotton loses quality when it is stored for an extended period of time because
key components of the fibre, such as density, moisture, contamination, oil content, and
germination, change. In order to address the issues of storage and drying, there is a
significant theoretical and practical requirement to understand how heat and moisture
are distributed in raw cotton.

5 Conclusion

Multidimensional mathematical model, numerical algorithms, and software for han-
dling the problem of simultaneous heat and moisture transfer in heterogeneous porous
bodies have been developed to investigate, predict, and make management decisions about
the drying and storage of raw cotton in open areas. Both the release of heat and moisture
inside and the exchange of heat and moisture with the environment are considered by
this model and algorithm. The results showed that when taking into account the initial
moisture content of the raw cotton mass and the duration of storage, one cannot ignore
the significance of internal heat and moisture release because these factors lead to debate
and self-ignition, which have a significant negative impact on the quality of the cotton
fiber.

According to experimental investigations, with prolonged storage (more than 50 days)
in the open space when the temperature and relative humidity of raw cotton approach
91°C and 42% (Fig. 7), respectively, the quality of the cotton fibre starts to deteriorate.
Additionally, it was noted that there were no quality deteriorations in the cotton with
less then 45% moisture content that was stored in September and October (Fig. 1-6).
The findings demonstrated that one cannot ignore the significance of internal heat and
moisture release when considering the initial moisture content of the raw cotton mass and
the length of storage because these factors cause debate and self-ignition, which have a
significant negative impact on the quality of the cotton fibre.
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MHOI'OMEPHAAd MATEMATNYECKA{A MO/IEJIb
OAJHOBPEMEHHOI'O TEIILJIO- 1 BJIAT'OIIEPEHOCA IIPU
CYIIKE N XPAHEHUN XJIOIIKA-CBIPITA HA
OTKPBITBHIX IIJIOITAJTKAX

* Paswanos H., ?Illadmaros H.
*ravshanzade-09@mail.ru
'Hayuno-uccire1oBaresibCKnii HHCTUTYT PA3BUTUS IAMPOBBIX TEXHOIOTHI ¥ NCKYCCTBEHHOTO
UHTEJJIEKTA,
100125, ¥Y3bekucran, r. Tamkent, Mupso-Yiyroekckuii p-on, M-B Bys-2, 1. 17A;
22ByxapcKuii TOCYIapCTBEHHbIH YHIBEPCHTET,
200100, ¥Yzbekucran r. byxapa, M. k6o, 11.

[Ipemyioxkena MHOrOMepHasl MaTeMaTHYeCKas MOJeNb OJHOBPEMEHHBIX IIPOIECCOB
TEIUIO- U BJIArOIIEPEHOCa B HEOAHOPOMHBLIX IIOPUCTBIX Tejax, YUUTHIBAIONIAs BHYTPEH-
Hee TeILIO- U BJIaroBbIJACICHNE, TEIlJIO- U BJIaroobMeH ¢ oKpyzKaromieil cpenoii. Ha ocHose
HCHOJIb30BaHUA HEIBHOMI KOHe‘{HO—paSHOCTHOI';I CXeMbI BTOPOI'O IOpAAKa TOYHOCTH I10 Bpe-
MEHHBIM U IIPOCTPAHCTBEHHBIM IIEPEMEHHBIM CO31aHO 3(h(HEKTUBHOE INCTIEHHOE pPelleHne
samad. Ha ocHOBe pa3spaboTaHHOrO YMCJIEHHOTO aJITOPUTMAa CO3/IAaHO IIPOrpaMMHOE 0bec-
evYeHne i U3yYeHus U aHaJi3a IPOLEeCCOB TEIJIO- U BJIAIOIEPEHOCa [IPU XPAHEHUH U
CyIIIKe XJIOIKa-ChIPIa Ha OTKPBITBHIX ILIOMIAIKAX, HO3BOJIAIOIIEE BBIAB/ISITL U IPOTHO3U-

POBaThb UBMEHEHUA TeMIIepaTyPhbl U BJIa2KHOCTU B ITPOU3BOJIBHBIX TOYKaX XJIOIIKa-CbIPIia.

KuarodeBsble cjioBa: MaTeMaTndeckast MOIEb, KOHEUHO-PA3HOCTHAS CXeMa, TeIlTO0OMeH,
BJIATOIIEPEHOC, XJIOTIOK-ChIPEITL.

IHuruposanmne: Paswaros H., Illadmarnos M. Muoromepnast MmareMaTndecKas MOJIEIIb
OIHOBPEMEHHOI'O TEILJIO- M BJIArOIIEPEHOCa MPH CYIIKe U XPaHEeHNH XJIONKa-ChIpIa Ha OT-
KPBITBIX [tonaaKkax // IIpobsieMbl BBIYUCIUTEIBHOMN 1 IIPUKJIAIHOM MaTeMaTuku. — 2024.
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