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Для численного решения задачи Дирихле для уравнения Пуассона разработаны
как прямые, так и итерационные методы. Однако требуемое число арифметических
операций для прямых методов, а также число итераций в итерационных методах
зачастую оказываются очень большим. По этой причине вопрос о высокой точности
и эффективности тех или иных методов остаются актуальной. В данной работе для
численного решения задачи Дирихле для уравнения Пуассона предлагается новый
высокоточный и эффективный метод- дискретный вариант метода предварительно-
го интегрирования значительно превосходящий по числу арифметических операций
существующих прямых и итерационных методов. Эффективность предлагаемого ме-
тода иллюстрируются в табличных и графических результатах.
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1 Введение
В результате разностной аппроксимацим краевых задач для эллиптических урав-

нений получается система линейных алгебраических уравнений. Матрица 𝐴 этой си-
стемы имеет большой порядок, равный числу узлов сетки. Например, для разносет-
ной сетки с шагом ℎ по каждому из переменных число узлов сетки равен 𝐹 = 𝑂

(︀
1
ℎ𝑝

)︀
,

где 𝑝 – число измерений. В случае двух и трех измерений число уравнений может
быть большим, 𝐹 ≈ 104 − 106 (например, при ℎ = 1/100) [1]. Кроме того, матри-
ца системы является разреженной (т.е. имеет много нулевых элементов), принимает
специфическую (ленточную) структуру и, наконец, является плохо обусловленной
матрицей, т.е. отношение наибольшего собственного значения матрицы 𝐴 к ее наи-
меньшему собственному значению очень велико

(︀
∼ 103 − 104

)︀
.

Все задачи для эллиптических уравнений имеют общее свойство: предполагается,
что внешние воздействия не зависят от времени, а начальные условия были заданы
достаточно давно, так что физическая система успела выйти на стационарное реше-
ния.

Эти особенности эллиптических сеточных уравнений требуют разработки специ-
альных итерационных и прямых экономичных алгоритмов для их численного реше-
ния.

Имеющиеся прямые экономичные методы применяются, как правило, для реше-
ния узкого, хотя и очень важного, класса сеточных уравнений. Кроме того, прямые
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методы используются в итерационных методах для обращения оператора на верхнем
слое.

В настоящее время существуют два экономичных прямых метода для решения
разностных краевых задач в случае уравнения Пуассона в различных системах ко-
ординат. Один из них - метод декомпозиции или метод нечетно-четного исключения
с факторизацией является модификацией метода исключения Гаусса. Другой метод
- метод разделения переменных основан на использовании алгоритма быстрого пре-
образования Фурье. Для обоих методов справедлива следующая оценка числа ариф-
метических операций 𝑄, требуемых для нахождения решения в случае двумерной
задачи – 𝑄 = 𝐾1 (𝑁

2log2𝑁), где 𝑁 число узлов по одному направлению.
Например, при двумерном случае когда ℎ = 1/100, число 𝑁 будет равным 100, а

число арифметических операций приблизительно равен 𝑄 = 𝐾2

(︀
7 · 102

)︀
. Кроме вы-

шеуказанных методов, имеется еще один прямой метод- метод матричной прогонки.
Однако матричная прогонка требует 𝑄 = 𝐾3 (𝑁

4) арифметических операций и боль-
шую память для хранения промежуточных величин. Здесь 𝐾1, 𝐾2, 𝐾3 константы
определяемые из свойств применяемого метода. Требования предъявляемые к повы-
шению порядок точности прямых методов приводять к значительному увеличению
значения этих констант.

Наряду с прямыми методами для численного решения краевых задач в случае
уравнения Пуассона можно применять итерационные методы. Однако число итера-
ций в которых зачастую оказывается очень большим. С увеличением требования
к точности число итераций значительно увеличивается. Приведем таблицу 1 для
сравнения числа итераций для различных итерационных методов в зависимости от
требуемой точности 𝜀.

Матрица 𝐴 используемые в итерационных методах обладает следующими свой-
ствами:

𝐴 = 𝐴* > 0,

𝛿𝐸 ⩽ 𝐴 ⩽ ∆𝐸, 𝛿 > 0,

𝛿 =
4

ℎ2
sin2𝜋ℎ

2
,

∆ =
4

ℎ2
cos2

𝜋ℎ

2
,

где
𝛿 = min

1⩽𝑘⩽𝑁−1
𝜆𝑘(𝐴),

∆ = ‖𝐴‖ = min
1⩽𝑘⩽𝑁−1

𝜆𝑘(𝐴),

𝜆𝑘(𝐴) – к-е собственное значение матрицы 𝐴.
В табл.1 сравнены число итераций для получения выбранной точности 𝜀 для раз-

ных итерационных методов: метод простой итерации (МПИ), Чебышевский набор па-
раметров (ЧНП), попеременно-треугольный метод (ПТМ), метод верхней релаксации
(МВР) и итерационный метод переменных направлений (ИМПН) с оптимальными
итерационными параметрами.

Таблица 1 Сравнение итерационных методов по числу итераций
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Опираясь на вышепреведенные рассуждения можно заключить, что ИМПН с оп-
тимальными итерационными параметрами является экономичным методом числен-
ного решения задачи Дирихле для уравнения Пуассона. Однако оптимальных высо-
коточных и эффективных прямых методов для решения эллиптических уравнений
пока не имеются. Основной целью данной статьи является построение оптимально-
го, высокоточного и эффективного прямого метода решения задачи Дирихле для
уравнения Пуассона. Предлагаемый дискретный вариант МПИ является численным
методом отвечающим всем этим требованиям, в котором в качестве базисных функ-
ций используются полиномы Чебышева первого рода.

С этой целью приведем обзор по применению полиномов Чебышева при разработ-
ке новых методов, при усовершенствование существующих методов и для численного
решения различных прикладных задач.
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В статье [2] авторы предлагают исследовать численные решения нескольких моде-
лей дробного порядка для многомерного связанного уравнения Кортевега-Де Фриза,
включающего множество различных ядер. Показано, что применяемый спектраль-
ный метод обеспечивает превосходную точность и экспоненциальную сходимость. В
статье [3] введены некоторые новые определения и более общие пространства ре-
зультатов в порядке, соответствующем функциям и особенностям конечных точек.
Обсуждаются распространение полученных основных результатов на оптимальные
оценки соответствующей интерполяции Чебышева, полученные численные результа-
ты демонстрируют отличное совпадение с ошибочными оценками.

Для обеспечения эффективности метода вычисления двойных конечных рядов по
полиномам Чебышёва в работе [4, 5] было использовано быстрое дискретное косинус-
ное преобразование Фурье. Этот метод существенно увеличивает скорость вычисле-
ний и делает методы, основанные на полиномах Чебышёва, более практичными.

В работе [6] алгебраические преобразования и свойства многочленов Чебышёва
используются для получения важного тождества, включающего сумму степеней ин-
теграла многочленов Чебышёва первого рода.

Статья [7] посвящена разработке численно-аналитического метода построения
экстремумов нормированных полиномов Чебышёва, заданных в квадрате комплекс-
ной плоскости. Исследуемые полиномы являются обобщёнными формами класси-
ческих полиномов Чебышёва первого рода. В статье подчёркивается возможность
вычисления экстремумов полиномов в квадрате комплексной плоскости.

Применение полиномов Чебышёва первого типа к численному решению краевой
задачи восьмого порядка представлено в статье [8]. В данной статье на основе пред-
ложенного подхода рассматриваемая задача сводится к системе линейных алгебра-
ических уравнений, которая затем решается для нахождения неизвестных констант.
Для демонстрации эффективности используемого метода аналитические решения,
подобранные для трёх примеров, сравниваются в таблицах и графиках. Получен-
ные с помощью данного метода результаты демонстрируют простоту метода и его
преимущества перед рядом других методов.

В [9] собственные комплексно-матричные методы теории графов были использо-
ваны для построения ортогональных многочленов, в том числе многочленов Чебы-
шёва, без использования рекурсии. Предлагаемые в данной работе методы предпо-
лагают прямое вычисление комплексно-смешанных матриц графов и их характери-
стических многочленов.

Анализ полиномов Чебышёва первого типа и их характеристик представлен в
статье [10]. В данной статье показан процесс получения явного решения дифферен-
циального уравнения второго порядка с использованием полиномов Чебышёва. С
помощью полученных явных решений доказана симметрия и ортогональность поли-
номов Чебышёва.

В статье [11] представлены сведения о введении и изучении до недавних пор мно-
жества иррациональных функций, в котором широко использовались дробные степе-
ни многочленов Чебышёва. В статье упоминается, что функции, полученные таким
образом, называются псевдочебышёвскими функциями.

В статье [12] показано, как несколько важных свойств, связанных со степенны-
ми суммами производных многочленов Чебышёва I типа, могут быть получены с
помощью комбинаторики и алгебраических перестановок.

Описание обобщённых многочленов Чебышёва первого рода приведено в [13]. В
статье подчёркивается, что весьма полезные свойства многочленов Чебышёва могут
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быть эффективно использованы при решении математических задач, и поэтому в
последние годы в области теории приближений было проведено много исследований
с использованием этих многочленов.

В статье [14] приведены сведения о коэффициентах повторения для полиномов
Чебышёва первого типа, точная формула в терминах ортогональности к весовой
функции полинома и явное выражение этих полиномов через некоторые функции.

Применение полиномов Чебышёва для сегментации и построения границ челове-
ческого мозга при магнитно-резонансной томографии (МРТ) представлено в [15]. В
данной работе предлагается новый детектор, позволяющий определять границы моз-
га на основе коэффициентов перестановки, полученных из функции точек рассеяния,
построенных на основе ортогональных полиномов Чебышёва.

В [16] описан метод конечных элементов на основе полиномов Чебышёва для ана-
лиза жидкостей, оболочек и пластин. В данной работе подчёркивается, что предло-
женный метод может обеспечивать надёжные и эффективные результаты. Ортого-
нальные многочлены Чебышёва широко используются для приближения функций,
и анализ зависимости точности приближения от характера приближаемой функции,
её области определения, степени многочлена Чебышёва и числа узлов коллокации
представлен в статье [17]. В данной статье показан оптимальный выбор степени раз-
ложения ряда Чебышёва для достижения заданной точности.

В работе [18] для численного решения уравнения Орра-Зомерфельда был исполь-
зован спектрально-сеточный метод на основе полиномов Чебышева первого рода. В
работе [19] показано использование полиномов Чебышёва при численном моделиро-
вании задачи на собственные значения для нелинейного обыкновенного дифферен-
циального уравнения с малым параметром перед старшей производной и системы
уравнений этого класса. В статье [20] спектральные и спектрально-сеточные методы
были использованы при математическом моделировании задачи гидродинамической
устойчивости однофазных и двухфазных течений.

В работе [21] описано решение краевой задачи для обыкновенного дифференци-
ального уравнения с малым параметром при старшей производной спектральным
методом на основе многочленов Чебышёва второго рода. Представленные в работе
численные и графические результаты демонстрируют эффективность данного ме-
тода при различных значениях многочлена. В работе [22] изложены теоретические
основы спектрально-сеточного метода решения начально-краевой задачи для урав-
нения Бюргерса. Сходимость непрерывного варианта метода предварительного ин-
тегрирования при решении нелинейного обыкновенного дифференциаль ного урав-
нения четвертого порядка с малым параметром при старшей производной изложена
в [23].

Численное решение краевой задачи для бигармонического уравнения дискретным
вариантом метода предварительного интегрирования изложена в статье [24]. В кото-
рой в качестве базисных функций использованы полиномы Чебышева первого рода.
В статье [25] дискретный вариант МПИ применён к численному решению эллип-
тических уравнений. Показано, высокая точность к эффективность предлагаемого
метода.

Применение дискретного варианта МПИ для численного моделирования изгиба
тонкой пластины изложено в [26]. В статье [27] изложено высокая точность и эффек-
тивность дискретного варианта МПИ при численном моделирование изгиба железо-
бетонной плиты описываемый краевой задачей для бигармонического уравнения.
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2 Постановка задачи
Рассмотрим задачу Дирихле для уравнения Пуассона в прямоугольной области

𝐷 = {−1 ⩽ 𝑥, 𝑦 ⩽ 1}
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= −𝑓(𝑥, 𝑦), (1)

𝑢(−1, 𝑦) = 0, 𝑢(1, 𝑦) = 0, 𝑢(𝑥,−1) = 0, 𝑢(𝑥, 1) = 0. (2)

Для численного моделирования дифференциальной задачи (1)-(2) применяем
дискретный вариант МПИ. Для проверки сходимости и порядка точности рассмат-
риваемого метода воспользуемся методом пробных функций. Суть данного метода
заключается в следующем. Выбирается некоторая произвольная функция 𝑢𝑒(𝑥, 𝑦)
удовлетворяющая краевым условиям (2). Подставляя ее в уравнение (1), определя-
ется правая часть

𝑓(𝑥, 𝑦) = −(𝜕
2𝑢𝑒
𝜕𝑥2

+
𝜕2𝑢𝑒
𝜕𝑦2

). (3)

Полученная задача решается дискретным вариантом МПИ и приближенное реше-
ние сравнивается с известной пробной функцией 𝑢𝑒(𝑥, 𝑦) на различных коллокацион-
ных узлах полиномов Чебышева первого рода. В качестве пробной функции (точного
решения) дифференциальной задачи (1)-(2) рассмотрим функцию:

𝑢𝑒 = (1− 𝑥2)(1− 𝑦2)sin2(𝑥+ 𝑦), (4)

для выбранной функции (4) правая часть (3), имеет вид:

𝑓(𝑥, 𝑦) = −2
(︀(︀
𝑦2 − 1

)︀
(4𝑥 sin (𝑥+ 𝑦) cos (𝑥+ 𝑦)−

(︀
𝑥2 − 1

)︀ (︀
sin2 (𝑥+ 𝑦)−

−cos2 (𝑥+ 𝑦)
)︀
+ sin2 (𝑥+ 𝑦)

)︀
+
(︀
𝑥2 − 1

)︀
(4𝑦 sin (𝑥+ 𝑦) cos (𝑥+ 𝑦)−

−
(︀
𝑦2 − 1

)︀ (︀
sin2 (𝑥+ 𝑦)− cos2 (𝑥+ 𝑦)

)︀
+ sin2 (𝑥+ 𝑦)

)︀)︀
.

Точное решение (4) необходимо для сравнения с приближенным решением полу-
ченным дискретным вариантом МПИ.

3 Метод решения
Для численного моделирования дифференциальной задачи (1)-(2) приведем ал-

горитмы численного решения ИМПН с оптимальными итерационными параметрами
и дискретного варианта МПИ.
a) алгоритм итерационного метода переменных направлений с оптимальными итера-
ционными параметрамы. Данная схема имеет вид [1]

𝑦
𝑗+1/2
𝑖1𝑖2

− 𝑦𝑗𝑖1𝑖2
𝜏
(1)
𝑗+1

= Λ1𝑦
𝑗+1/2
𝑖1𝑖2

+ Λ2𝑦
𝑗
𝑖1𝑖2

+ 𝑓(𝑥1, 𝑥2), (𝑥1, 𝑥2) ∈ 𝜔ℎ, 𝑦
𝑗+1/2

⃒⃒
𝛾ℎ

= 𝜇(𝑥),

𝑦𝑗+1
𝑖1𝑖2
− 𝑦𝑗+1/2

𝑖1𝑖2

𝜏
(2)
𝑗+1

= Λ1𝑦
𝑗+1/2
𝑖1𝑖2

+ Λ2𝑦
𝑗+1
𝑖1𝑖2

+ 𝑓(𝑥1, 𝑥2), (𝑥1, 𝑥2) ∈ 𝜔ℎ, 𝑦
𝑗+1
⃒⃒
𝛾ℎ

= 𝜇(𝑥)

0 < 𝑖1 < 𝑁1 − 1, 0 < 𝑖2 < 𝑁2 − 1

(5)

для 𝑗 = 0, 1, 2, ... при произвольных начальных данных 𝑦0 = 𝑦(𝑥1, 𝑥2, 0).
Здесь 𝑗 – номер итерации, 𝑦𝑗+1/2 – промежуточная итерация (подытерация),

𝜏
(1)
𝑗+1 > 0 и 𝜏

(2)
𝑗+1 > 0 итерационные параметры, подлежащие выбору из условия
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минимума итераций, Λ𝛼𝑦 = 𝑦𝑥𝛼𝑥𝛼 , 𝛼 = 1, 2 разностный оператор второго по-
рядка, 𝜔ℎ = 𝜔ℎ + 𝛾ℎ =

{︀
𝑥𝑖 = (𝑖1ℎ1, 𝑖2ℎ2) ∈ 𝐺

}︀
разностная сетка в области 𝐺 =

= {−1 ⩽ 𝑥𝛼 ⩽ 1, 𝛼 = 1, 2}.
Переход от 𝑗 – й итерации к (𝑗 + 1) – й итерации достичается последователь-

ным применением метода прогонки вдоль строк и вдоль столбцов для следующих
трехточечных уравнений

𝑦𝑗+1/2 − 𝜏 (1)𝑗+1Λ1𝑦
𝑗+1/2 = 𝐹 𝑗, 𝐹 𝑗 = 𝑦𝑗 + 𝜏

(1)
𝑗+1Λ1𝑦

𝑗 + 𝜏
(1)
𝑗+1𝑓 (вдоль строк),

и

𝑦𝑗+1 − 𝜏 (2)𝑗+1Λ2𝑦
𝑗+1 = 𝐹 𝑗+1/2, 𝐹 𝑗+1/2 = 𝑦𝑗+1/2 + 𝜏

(2)
𝑗+1Λ1𝑦

𝑗+1/2 + 𝜏
(2)
𝑗+1𝑓 (вдоль столбцов).

Таким образом, для вычисления одной итерации требуется 64𝑁1𝑁2 арифметиче-
ских действий, в случае 𝑁1 = 𝑁2 = 𝑁 требуется 64𝑁2 арифметических операций. В
ИМПИ с оптимальными итерационными параметрами для получения заданной точ-
ности 𝜀 > 0 требуется выполнения 𝑛(𝜀) итераций, где формула для число итераций
приведено в табл.1 и имеет вид 𝑛(𝜀) = 1

𝜋2 ln
4
𝜀
ln 4

𝜂
.

Вводя обозначения

𝜃 =
1

16
𝜂2
(︂
1 +

1

2
𝜂2
)︂
, 𝜎 =

2𝑗 − 1

2𝑛(𝜀)
, 𝑗 = 1, 2, ..., 𝑛(𝜀),

𝜔𝑗 =
(1 + 2𝜃)(1 + 𝜃𝜎)

2𝜃𝜎/2(1 + 𝜃1−𝜎 + 𝜃1+𝜎)
, 𝑗 = 1, 2, ..., 𝑛(𝜀)

определяются искомые оптимальные итерационные параметры

𝜏
(1)
𝑗 =

𝑞𝜔𝑗
+ 𝑟

1 + 𝜔𝑗𝑝
, 𝜏

(2)
𝑗 =

𝑞𝜔𝑗
− 𝑟

1− 𝜔𝑗𝑝
,

где 𝜒 = (Δ−𝛿)Δ
(Δ+𝛿)Δ

, 𝑝 = 𝜒−𝑡
𝜒+𝑡

, 𝑟 = 2𝑝Δ
2Δ2 , 𝑞 = 𝑟 + 1−𝑝

Δ
.

После этого решается задача (5).
Тогда требуемая общая число арифметических операций для реализации ИМПН

с оптимальными итерационными параметрами определяется по следующей формуле

𝑄 = 64𝑁2𝑛(𝜀). (6)

Для численного моделирования дифференциальной задачи (1)-(2) применяем
дискретный вариант МПИ. Суть данного подхода заключается в следующем: част-
ные производные и правая часть уравнения (1) представляются в виде двойного
конечного ряда по полиномам Чебышева первого рода. С помощью имеющихся стан-
дартных формул для полиномов получающиеся дискретное уравнение дважды “ин-
тегрируется” по переменной 𝑥 и по переменной 𝑦. Краевые условия (2) также запи-
сываются в виде рядов. В результате получается система линейных алгебраических
уравнений для определения неизвестных коэффициентов приближенного решения
задачи (1)-(2). Затем в коллокационных узлах полиномов Чебышева сравниваются
пробная функция (точное решение) и приближенные решения полученное дискрет-
ным вариантом МПИ.

Таким образом, частные производные и правую часть представим в виде следу-
ющих рядов:
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𝜕2𝑢

𝜕𝑥2
=

𝑁∑︁
𝑖=0

′
𝑀∑︁
𝑗=0

′𝑎
(2𝑥)
𝑖𝑗 𝑇𝑖(𝑥)𝑇𝑗(𝑦),

𝜕2𝑢

𝜕𝑦2
=

𝑁∑︁
𝑖=0

′
𝑀∑︁
𝑗=0

′𝑎
(2𝑦)
𝑖𝑗 𝑇𝑖(𝑥)𝑇𝑗(𝑦),

𝑓(𝑥, 𝑦) =
𝑁∑︁
𝑖=0

′
𝑀∑︁
𝑗=0

′𝑔𝑖𝑗𝑇𝑖(𝑥)𝑇𝑗(𝑦), (7)

где 𝑇𝑖(𝑥), 𝑇𝑗(𝑦) – полиномы Чебышева первого рода, штрих над суммой означает,
что коэффициенты рядов 𝑎𝑖𝑗, 𝑔𝑖𝑗 берется со множителем 1

4
когда 𝑖 = 𝑗 = 0, эти

коэффициенты берется со множителем 1
2

когда 𝑖 = 0 или 𝑗 = 0.
После двухкратного интегрирования рядов (5) для частных производных полу-

чается конечный двойной ряд по полиномам Чебышева для определения приближен-
ного (аппроксимационного) решения дифференциальной задачи следующего вида

𝑢𝑎(𝑥, 𝑦) =
𝑁∑︁
𝑖=0

′
𝑀∑︁
𝑗=0

′𝑎𝑖𝑗𝑇𝑖(𝑥)𝑇𝑗(𝑦), (8)

c неопределенными коэффициентами 𝑎𝑖𝑗(𝑖 = 0, 1, ..., 𝑁 ; 𝑗 = 0, 1, ...,𝑀), общее число
которых равны (𝑁 + 1)(𝑀 + 1).

Теперь приведем алгоритм решения предлагаемого дискретного варианта МПИ
[2, 27]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4𝑖(𝑖2 − 1)((𝑗 + 1)𝑎𝑖,𝑗−2 − 2𝑗𝑎𝑖,𝑗 + (𝑗 − 1)𝑎𝑖,𝑗+2)+
+4𝑗(𝑗2 − 1)((𝑖+ 1)𝑎𝑖−2,𝑗 − 2𝑖𝑎𝑖,𝑗 + (𝑖− 1)𝑎𝑖+2,𝑗) =
= −((𝑖+ 1)((𝑗 + 1)𝑔𝑖−2,𝑗−2 − 2𝑗𝑔𝑖−2,𝑗 + (𝑗 − 1)𝑔𝑖−2,𝑗+2)−
−2𝑖((𝑗 + 1)𝑔𝑖,𝑗−2 − 2𝑗𝑔𝑖,𝑗 + (𝑗 − 1)𝑔𝑖,𝑗+2)+
+(𝑖− 1)((𝑗 + 1)𝑔𝑖+2,𝑗−2 − 2𝑗𝑔𝑖+2,𝑗 + (𝑗 − 1)𝑔𝑖+2,𝑗+2)), (𝑖 = 2, 𝑁, 𝑗 = 2,𝑀),
𝑎1𝑗 + 𝑎3𝑗 + ...+ 𝑎2𝑀−1,𝑗 = 0, (𝑗 = 2,𝑀),
1
2
𝑎0𝑗 + 𝑎2𝑗 + 𝑎4𝑗 + ...+ 𝑎2𝑀,𝑗 = 0, (𝑗 = 2,𝑀),
𝑎𝑖1 + 𝑎𝑖3 + 𝑎𝑖5 + ...+ 𝑎𝑖,2𝑀−1 = 0, (𝑖 = 0, 𝑁),
1
2
𝑎𝑖0 + 𝑎𝑖2 + 𝑎𝑖4 + ...+ 𝑎𝑖,2𝑀 = 0, (𝑖 = 0, 𝑁).

(9)

Систему (9) удобно записать в матричном виде

𝐴𝑥 = 𝑏, (10)

где 𝐴 – квадратная матрица порядка 𝐾×𝐾, здесь 𝐾 = (𝑁+1) ·(𝑀+1) состоящая из
коэффициентов системе (9), 𝑥𝑇 = (𝑎00, 𝑎10, ..., 𝑎𝑁0, 𝑎01, 𝑎11, ..., 𝑎𝑁1, ..., 𝑎0𝑀 , 𝑎1𝑀 , ..., 𝑎𝑁𝑀)
искомый вектор для неизвестных, 𝑏 – правая часть системе (9). Решая систему (10)
определяются коэффициенты 𝑎𝑖𝑗(𝑖 = 0, 1, ..., 𝑁 ; 𝑗 = 0, 1, ...,𝑀), затем по формулам (4)
вычисляются значения точного решения, а по формуле (8) значения приближенного
решения в коллокационных узлах полиномов Чебышева.

Общее число арифметических операций для численного решения задачи Дирихле
для уравнения Пуассона дискретным вариантом МПИ равен

𝑄 = 𝑄1 +𝑄2 = 31(𝑁 − 1)2 +
2

3
𝑁3, (11)

здесь для вычисления констант перед коэффициентамы 𝑎𝑖𝑗 и 𝑔𝑖𝑗 требуется 𝑄1 =
= 31(𝑁 − 1)2 – арифметических операций, а для решения системе (9) методом Гаусса
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требуется 𝑄2 = 2
3
𝑁3 арифметических операций, где для простоты верхний пределы

двойных сумм полиномов Чебышева выбраны равным, т.е. 𝑁 = 𝑀 . Теперь сравним
общее число затрачиваемых арифметических операций при решение задачи Дирихле
для уравнения Пуассона с использованием ИМПН с оптимальными итерационными
параметрами и дискретным вариантом МПИ. Результаты сравнения приведены в
табл.2

Таблица 2 Сравнение оптимального итерационного и оптимального метода по
числу арифметических операций

Из таблицы видно, что в дискретном варианте МПИ по сравнению с ИМПН с
оптимальными итерационными параметрами в случае 𝜀 = 10−4 требуется в среднем
9 раза, а в случае 𝜀 = 10−7 требуется в среднем 15 раза меньше арифметических
операций.

4 Обсуждение результатов

Приведем результаты численных расчётов по решению дифференциальной зада-
чи (1)-(2) вышеизложенным дискретным вариантом МПИ относительно выбранных
пробных функций (точных решений) (4).

В табл.3 приведены результаты сравнения точного и приближенного решения
для функций 𝑢𝑒(𝑥, 𝑦) в случае когда число аппроксимирующих полиномов как по
переменной “𝑥”, так и по переменной “𝑦” равны 10, 20, 30, 40, 50, 100, т.е. 𝑁 = 𝑀 =
= 10, 20, 30, 40, 50, 100. Видно, что при выбранных значениях характерных парамет-
ров точное решение найдено с очень высокой точностью, при этом максимальные
абсолютные погрешности являются малыми величинами.

Таблица 3. Сравнение точного и приближенного решения
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Результаты табл.3 наиболее наглядно иллюстрируются на рис.1-4. На рис.1 приве-
дены графики точного и приближенного решения для выбранной пробной функции
𝑢𝑒(𝑥, 𝑦), число полиномов равным 𝑁 =𝑀 = 10, 20, 30, 40.

а) точное решение 𝑢(1)𝑒 б) приближенное решение 𝑢(1)𝑎

Рис. 1 Графики точного и приближенного решения для функции 𝑢𝑒(𝑥, 𝑦) при 𝑁 = 𝑀 = 10

Графики точного и приближенного решения для функции 𝑢𝑒(𝑥, 𝑦) при 𝑁 =𝑀 =
= 20 изображены на рис.2.

На рис.3 приведены графики точного и приближенного решения для функции
𝑢𝑒(𝑥, 𝑦) при следующих значениях характерных параметров: 𝑁 =𝑀 = 30.

Динамика точного к приближенного решения для функции 𝑢𝑒(𝑥, 𝑦) при 𝑁 =𝑀 =
= 40. изображены на рис.4.
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а) точное решение 𝑢(1)𝑒 б) приближенное решение 𝑢(1)𝑎

Рис. 2 Графики точного и приближенного решения для функции 𝑢𝑒(𝑥, 𝑦) при 𝑁 = 𝑀 = 20

а) точное решение 𝑢(2)𝑒 б) приближенное решение 𝑢(2)𝑎

Рис. 3 Графики точного и приближенного решения для функции 𝑢𝑒(𝑥, 𝑦) при 𝑁 = 𝑀 = 30

а) точное решение 𝑢(2)𝑒 б) приближенное решение 𝑢(2)𝑎

Рис. 4 Графики точного и приближенного решения для функции 𝑢𝑒(𝑥, 𝑦) при 𝑁 = 𝑀 = 40
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5 Заключение
1. Проведен сравнительный анализ существующих прямых и итерационных ме-

тодов решения задачи Дирихле для уравнения Пуассона по числу арифметических
операций.

2. Установлен, что высокоточных и эффективных прямых методов решения за-
дачи Дирихле для уравнения Пуассона не имеются.

3. Среди итерационных методов метод переменных направлений с оптимальны-
ми итерационными параметрами требует значительно меньшую числа итераций по
сравнению с другими итерационными методами.

4. Предложен новый высокоточный и эффективный прямой метод – дискретный
вариант метода предварительного интегрирования.

5. Показано эффективность дискретного варианта метода предварительного ин-
тегрирования по сравнению с итерационным методом переменных направлений с
оптимальными итерационными параметрами по числу арифметических операций.

6. Результаты иллюстрирующие высокую точность и эффективность дискретного
варианта метода предварительного интегрирования представлены в виде таблицы и
графиков.
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