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Интегралы быстро осциллирующих функций появляются в основном в теории
специальных функций и анализе Фурье, но также и в других прикладных и вы-
числительных науках и технике, например, в теоретической физике, акустическом
рассеянии, квантовой химии, теории процессов переноса, электромагнетизме, теле-
коммуникациях, механике и т.д. Вычисление интеграла от быстро осциллирующих
функций часто выполняется методом Файлона. Метод Файлона напоминает квадра-
турную формулу Симпсона. Однако в то время, как в методе Симпсона вся подинте-
гральная функция заменяется параболой, в методе Файлона параболой заменяется
только функция 𝑓 (𝑥). Таким путём Файлон получил квадратурую формулу с ко-
эффициентами, зависящими от 𝜔. В данной работе будут построены оптимальные
квадратурные формулы в пространстве Соболева комплекснозначных периодиче-
ских функций для приближенного вычисления быстроосцилирующих интегралов.
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1 Введение
При решении таких классов задач, как статистическая обработка эксперименталь-

ных данных, цифровая фильтрация, распознавание образов, моделирование оптиче-
ских систем и синтезированных голограмм, краевые задачи для уравнений частных
производных и другие, возникает необходимость в вычислении интегралов вида [1]

𝐼0 (𝜔) =

1∫︁
0

𝑓 (𝑥) 𝑒2𝜋𝑖𝜔𝑥𝑑𝑥, (1)

𝐼1 (𝜔) =

1∫︁
0

𝑓 (𝑥) sin𝜔𝑥𝑑𝑥, (2)
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𝐼2 (𝜔) =

1∫︁
0

𝑓 (𝑥) cos𝜔𝑥𝑑𝑥. (3)

Здесь 𝑓 (𝑥) ∈ 𝐹 (𝐹 – некоторый заданный класс функций), 𝜔 – произвольное
вещественное число, информация о 𝑓 (𝑥) задана не более чем в 𝑁 точках.

Хорошо известно, что численный счет таких интегралов наталкивается на опреде-
ление трудности при больших значениях 𝜔 из-за того, что подинтегральная функция
сильно осцилирует.

Вычисление интеграла (1) при 𝜔 ∈ Z (Z – множество целых чисел) часто выпол-
няется методом Файлона [2]. Метод Файлона напоминает квадратурную формулу
Симпсона. Однако в то время, как в методе Симпсона вся подинтегральная функ-
ция заменяется параболой, в методе Файлона параболой заменяется только функция
𝑓 (𝑥). Таким путём Файлон получил квадратурую формулу с коэффициентами, за-
висящими от 𝜔.

Для приближенного вычисления интегралов (1)-(3) в работе [3] Н.П. Еругиным
и С.Л. Соболеваым предложен метод, который также сохраняет равномерную точ-
ность относительно 𝜔. В работе [4] В.И.Крылов развивал метод Файлона. В [5] при
построении квадратурной формулы для вычисления коэффициентов Фурье была ис-
пользована сплайн интерполяции и многочлены Лагранжа.

Работы [6, 7] посвящены нахождению оптимальных оценок и построению опти-
мальных по точности квадратурных формул вычисления преобразования Фурье фи-
нитных функций вида (2) и (3) в предположении, что 𝑓 (𝑥) принадлежит в интерпо-
ляционный класс функций, удовлетворяющих условию Липщица. В работах [8, 9] с
помощью функциональных методов построены оптимальные квадратурные форму-
лы в пространствах Гильберта.

В настоящей работе мы будем построить оптимальные квадратурные формулы
для приближенного вычисления интеграла (1) в пространстве 𝐻̃(𝑚)

2 (0, 1).

2 Постановка задачи
Пусть 𝐻(𝑚)

2 (0, 1) – пространство Соболева 1 – периодических комплекснозначных
функций 𝜙 (𝑥), −∞ < 𝑥 < ∞, отличающихся более, чем на константу, 𝑚 – е произ-
водные которых (в обобщенном смысле) квадратично интегрируемы со скалярным
произведением

(𝑓, 𝜙) =

1∫︁
0

𝑑𝑚𝑓

𝑑𝑥𝑚
𝑑𝑚𝜙

𝑑𝑥𝑚
𝑑𝑥 (4)

и нормой ⃦⃦⃦⃦
𝜙
⃒⃒⃒
𝐻̃

(𝑚)

2

⃦⃦⃦⃦
=

⎛⎝ 1∫︁
0

𝜙(𝑚) (𝑥)𝜙(𝑚) (𝑥)𝑑𝑥

⎞⎠
1
2

.

Здесь обозначение 𝜙 (𝑥) сопряженное к 𝜙 (𝑥). Для 𝜙 (𝑥) ∈ 𝐻̃(𝑚)
2 (0, 1) рассмотрим

следующую квадратурную формулу

1∫︁
0

exp (2𝜋𝑖𝜔𝑥)𝜙 (𝑥) 𝑑𝑥 ∼=
𝑁∑︁
𝑘=1

𝐶𝑘𝜙 (𝑥𝑘) , (5)
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где 𝐶𝑘 и 𝑥𝑘 соответственно коэффициенты и узлы квадратурной формулы, 𝑁 =
= 2, 3, ..., 𝜔 ∈ 𝑅(𝑅 – множество действительных чисел). Погрешность квадратурной
формулы (5) определяется равенством

(𝑙, 𝜙) =

1∫︁
0

exp (2𝜋𝑖𝜔𝑥)𝜙(𝑥) 𝑑𝑥−
𝑁∑︁
𝑘=1

𝐶𝑘 𝜙(𝑥𝑘) =

=

1∫︁
0

(︃
exp (2𝜋𝑖𝜔𝑥)−

𝑁∑︁
𝑘=1

𝐶𝑘 𝛿(𝑥− 𝑥𝑘) * 𝜙0(𝑥)

)︃
𝜙(𝑥) 𝑑𝑥.

(6)

Здесь 𝛿 (𝑥) – дельта функция Дирака,

𝑙 (𝑥) = 𝜀[0,1] (𝑥) exp (2𝜋𝑖𝜔𝑥) −
𝑁∑︀
𝑘=1

𝐶𝑘𝛿 (𝑥− 𝑥𝑘) * 𝜙0 (𝑥) функционал погрешности квад-

ратурной формулы (5), 𝜙0 (𝑥) =
∞∑︀

𝛽=−∞
𝛿 (𝑥− 𝛽). Наша задача о построении опти-

мальной квадратурной формулы для приближенного вычисления интеграла 𝐼0 (𝜙) =

=
1∫︀
0

exp (2𝜋𝑖𝜔𝑥)𝜙 (𝑥) 𝑑𝑥 при фиксированном 𝑥𝑘 заключается в следующем.

Требуется найти величину

inf
𝐶𝑘

⎛⎜⎜⎝ sup
𝜙∈𝐻̃(𝑚)

2

|(𝑙, 𝜙)|⃦⃦⃦⃦
𝜙
⃒⃒⃒
𝐻̃

(𝑚)

2

⃦⃦⃦⃦
⎞⎟⎟⎠ =

⃦⃦⃦⃦
𝑜

𝑙
⃒⃒⃒
𝐻̃

(𝑚)*

2

⃦⃦⃦⃦
.

Это означает, что найти функцию 𝜓𝑙 (𝑥) из 𝐻̃(𝑚)
2 (0, 1) для которой достигается

точная верхняя грань, далее найти коэффициенты 𝐶𝑘 для которых достигается точ-
ная нижняя грань в (6). Это означает, что выполняется следующее равенство

(𝑙, 𝜓𝑙) =

⃦⃦⃦⃦
𝑙
⃒⃒⃒
𝐻̃

(𝑚)*

2

⃦⃦⃦⃦ ⃦⃦⃦⃦
𝜓𝑙

⃒⃒⃒
𝐻̃

(𝑚)

2

⃦⃦⃦⃦
.

Коэффициенты 𝐶𝑘 называется оптимальными коэффициентами а
⃦⃦⃦⃦
𝑜

𝑙
⃒⃒⃒
𝐻̃

(𝑚)*

2

⃦⃦⃦⃦
нор-

мой функционала погрешности оптимальной квадратурной формулы. В следующем
пункте мы приводим оптимальные квадратурные формулы при 𝑥𝑘 = ℎ𝑘, ℎ = 1

𝑁
.

3 Основные результаты
Основные результаты в этой работе приводятся в следующих теоремах.
Теорема 1. Среди квадратурных формул вида (5) в пространстве 𝐻̃(1)

2 (0, 1) при
𝜔 ∈ 𝑅 существует единственная оптимальная квадратурная формула коэффициенты
которой определяется формулой

𝑜

𝐶 [𝛽] = ℎ
𝑒2𝜋𝑖𝜔 − 1

2𝜋𝑖𝜔
− ℎ
∑︁
𝛾 ̸=0

(︂
sin 𝜋ℎ𝛾

𝜋ℎ𝛾

)︂2
𝑒2𝜋𝑖(𝜔−𝛾) − 1

2𝜋𝑖 (𝜔 − 𝛾)
𝑒2𝜋𝑖𝛾ℎ𝛽, 𝛽 = 1, 2, ..., 𝑁, ℎ =

1

𝑁
.

При 𝜔 ∈ Z оптимальные коэффициенты
𝑜

𝐶 [𝛽] принимает следующий вид:

𝑜

𝐶 [𝛽] = ℎ

(︂
sin 𝜋𝜔ℎ

𝜋𝜔ℎ

)︂2

𝑒2𝜋𝑖𝜔ℎ𝛽, 𝛽 = 1, 2, ..., 𝑁.



Оптимизация приближенного вычисления интегралов . . . 135

А при 𝜔 = 0, оптимальные коэффициенты принимает следующий вид:
𝑜

𝐶 [𝛽] = ℎ, 𝛽 = 1, 2, ..., 𝑁.

Теорема 2. В пространстве 𝐻̃(2)
2 (0, 1) Соболева периодических функций следу-

ющая квадратурная формула является оптимальной

1∫︁
0

𝑒2𝜋𝑖𝜔𝑥𝜙 (𝑥) 𝑑𝑥 ∼=
𝑁∑︁

𝛽=1

𝐶𝛽 𝜙 (ℎ𝛽).

Здесь оптимальные коэффициенты
𝑜

𝐶 [𝛽] задается равенством

𝑜

𝐶 [𝛽] = ℎ
𝑒2𝜋𝑖𝜔 − 1

2𝜋𝑖𝜔
− ℎ
∑︁
𝛾 ̸=0

𝑒2𝜋𝑖(𝜔−𝛾) − 1

2𝜋𝑖 (𝜔 − 𝛾)
· 3
(︂
sin 𝜋ℎ𝛾

𝜋ℎ𝛾

)︂4
𝑒2𝜋𝑖ℎ𝛾𝛽

cos 2𝜋ℎ𝛾 + 2
,

𝜔 ∈ 𝑅, 𝜔∈Z, 𝛽 = 1, 2, ..., 𝑁.

А при 𝜔 ∈ 𝑍∖0, оптимальные коэффициенты
𝑜

𝐶 [𝛽] принимает следующий вид:

𝑜

𝐶 [𝛽] = 3ℎ

(︂
sin 𝜋ℎ𝛾

𝜋ℎ𝛾

)︂4
𝑒2𝜋𝑖𝜔ℎ𝛽

cos 2𝜋ℎ𝜔 + 2
, 𝛽 = 1, 2, ..., 𝑁.

В случае 𝜔 = 0 оптимальные коэффициенты
𝑜

𝐶 [𝛽] определяется равенством
𝑜

𝐶 [𝛽] = ℎ, 𝛽 = 1, 2, ..., 𝑁.

Теорема 3. Оптимальные коэффициенты квадратурной формулы вида (5) в про-
странстве 𝐻(3)

2 (0, 1) определяется формулой

𝑜

𝐶 [𝛽] = ℎ
𝑒2𝜋𝑖𝜔 − 1

2𝜋𝑖𝜔
+ 60ℎ

∑︁
𝛾 ̸=0

𝑒2𝜋𝑖(𝜔−𝛾) − 1

2𝜋𝑖 (𝜔 − 𝛾)
·
(︂
sin 𝜋𝛾ℎ

𝜋𝛾ℎ

)︂4

·

· 𝑒2𝜋𝑖ℎ𝛾𝛽

cos 4𝜋ℎ𝛾 + 26 cos 2𝜋ℎ𝛾 + 33
, 𝜔 ∈ 𝑅, 𝜔∈Z, 𝛽 = 1, 2, ..., 𝑁.

При 𝜔 ∈ 𝑍∖0, оптимальные коэффициенты принимают следующий вид:

𝑜

𝐶 [𝛽] = 60ℎ

(︂
sin 𝜋𝜔ℎ

𝜋𝜔ℎ

)︂6
𝑒2𝜋𝑖𝜔ℎ𝛽

cos 4𝜋𝜔ℎ+ 26 cos 2𝜋𝜔ℎ+ 33
, 𝛽 = 1, 2, ..., 𝑁.

А при 𝜔 = 0 оптимальные коэффициенты
𝑜

𝐶 [𝛽] принимает вид:
𝑜

𝐶 [𝛽] = ℎ, 𝛽 = 1, 2, ..., 𝑁.

4 Доказательство теорем
Для доказательства теорем мы будем использовать дискретных аналогов диффе-

ренциальных операторов вида [10] 𝑑2

𝑑𝑥2 ,
𝑑4

𝑑𝑥4 ,
𝑑6

𝑑𝑥6 , который определяются формулами

𝐷1 [𝛽] =

⎧⎨⎩
ℎ−2 |𝛽| = 1,
−2ℎ−2 𝛽 = 0,
0 |𝛽| ⩾ 2,
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𝐷2 [𝛽] =
6

ℎ4

⎧⎪⎨⎪⎩
(1−𝜆)5𝜆|𝛽|

𝜆4+11𝜆3+11𝜆2+𝜆
|𝛽| ⩾ 2,

1 + (1−𝜆)5

𝜆3+11𝜆2+11𝜆+1
𝛽 = 0,

−8 + (1−𝜆)5

𝜆4+11𝜆3+11𝜆2+𝜆
𝛽 = 0,

𝐷3 [𝛽] =
120

ℎ6

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2∑︀
𝑘=1

(1−𝜆𝑘)
7𝜆

|𝛽|
𝑘

𝜆6
𝑘+57𝜆5

𝑘+302𝜆4
𝑘+302𝜆3

𝑘+57𝜆2
𝑘+𝜆𝑘

|𝛽| ⩾ 2,

1 +
2∑︀

𝑘=1

(1−𝜆𝑘)
7

𝜆5
𝑘+57𝜆4

𝑘+302𝜆3
𝑘+302𝜆2

𝑘+57𝜆𝑘+1
|𝛽| ⩽ 1,

−32 +
2∑︀

𝑘=1

(1−𝜆𝑘)
7

𝜆6
𝑘+57𝜆5

𝑘+302𝜆4
𝑘+302𝜆3

𝑘+57𝜆2
𝑘+𝜆𝑘

𝛽 = 0.

Кроме того эти дискретные операторы удовлетворяют следующих равенств

∞∑︁
𝛽=−∞

𝐷1 [𝛽] 𝑒
2𝜋𝑖ℎ𝑝𝛽 = −4ℎ−2sin2 (𝜋ℎ𝑝), (7)

∞∑︁
𝛽=−∞

𝐷2 [𝛽] 𝑒
2𝜋𝑖ℎ𝑝𝛽 =

96ℎ−4sin4 (𝜋ℎ𝑝)

2 cos (2𝜋ℎ𝑝) + 4
=

48ℎ−4sin4 (𝜋ℎ𝑝)

cos (2𝜋ℎ𝑝) + 2
, (8)

∞∑︁
𝛽=−∞

𝐷3[𝛽] 𝑒
2𝜋𝑖ℎ𝑝𝛽 = − −26 5!ℎ−6 sin6(𝜋ℎ𝑝)

2 cos(4𝜋ℎ𝑝) + 52 cos(𝜋ℎ𝑝) + 66
=

= − 25 5!ℎ−6 sin6(𝜋ℎ𝑝)

cos(4𝜋ℎ𝑝) + 26 cos(𝜋ℎ𝑝) + 33
.

(9)

Доказательство теоремы 1. Для этого пользуемся формулой из работы [11]

𝑜

𝐶 [𝛽] = ℎ

⎡⎣ 1∫︁
0

𝑒2𝜋𝑖𝜔𝑥𝑑𝑥+

1∫︁
0

𝑒2𝜋𝑖𝜔𝑥𝐷1 [𝛽] *𝐵2 (𝑥− ℎ𝛽) 𝑑𝑥

⎤⎦ . (10)

𝐵2 (𝑥− ℎ𝛽) =
∑︁
𝛾 ̸=0

𝑒−2𝜋𝑖𝛾(𝑥−ℎ𝛽)

(2𝜋𝑖𝛾)2
. (11)

Теперь вычислим интеграл

𝐽1 (𝜙) =

1∫︁
0

𝑒2𝜋𝑖𝜔𝑥𝑑𝑥 =
𝑒2𝜋𝑖𝜔 − 1

2𝜋𝑖𝜔
. (12)

Не трудно заметить, что при 𝜔 ∈ 𝑍∖0, 𝑍− множество целых чисел 𝐽1 (𝜔) = 0. А
при 𝜔 стремящиеся к нулю 𝐽1 (𝜔) стремится к единице. Действительно

𝑙𝑖𝑚
𝜔→0

𝐽1 (𝜔) = 𝑙𝑖𝑚
𝜔→0

𝑒2𝜋𝑖𝜔 − 1

2𝜋𝑖𝜔
= 𝑙𝑖𝑚

𝜔→0

2𝜋𝑖𝑒2𝜋𝑖𝜔

2𝜋𝑖
= 1.

Рассмотрим следующий интеграл в равенстве (4.7)

𝐽2 (𝜔) =

1∫︁
0

𝑒2𝜋𝑖𝜔𝑥𝐷1 [𝛽] *𝐵2 (𝑥− ℎ𝛽) 𝑑𝑥 = 𝐷1 [𝛽] *
1∫︁

0

𝑒2𝜋𝑖𝜔𝑥𝐵2 (𝑥− ℎ𝛽) 𝑑𝑥.
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Отсюда в силу (11) имеем

𝐽2(𝜔) = 𝐷1[𝛽] *
∑︁
𝛾 ̸=0

1∫︀
0

𝑒2𝜋𝑖𝜔𝑥𝑒−2𝜋𝑖𝛾(𝑥−ℎ𝛽) 𝑑𝑥

(2𝜋𝑖𝛾)2
=

= 𝐷2[𝛽] *
∑︁
𝛾 ̸=0

𝑒2𝜋𝑖𝛾ℎ𝛽

(2𝜋𝑖𝛾)2

1∫︁
0

𝑒2𝜋𝑖(𝜔−𝛾)𝑥 𝑑𝑥.

(13)

Обозначим через

𝐽3 (𝜔, 𝛾) =

1∫︁
0

𝑒2𝜋𝑖(𝜔−𝛾)𝑥𝑑𝑥 =
𝑒2𝜋𝑖(𝜔−𝛾) − 1

2𝜋𝑖(𝜔−𝛾)
. (14)

Интеграл 𝐽3 (𝜔, 𝛾) при 𝛾 стремящиеся к 𝜔 стремиться к единице, т.е.

𝑙𝑖𝑚
𝛾→𝜔

𝑒2𝜋𝑖(𝜔−𝛾) − 1
2𝜋𝑖(𝜔−𝛾)

= 1.

Теперь пользуясь определением сверки двух функций дискретного аргумента, т.е.

𝑓 [𝛽] * 𝑔 [𝛽] =
∞∑︁

𝛾=−∞

𝑓 [𝛽 − 𝛾]𝑔 [𝛾] .

Имеем

𝐷1 [𝛽] * 𝑒2𝜋𝑖𝛾ℎ𝛽 =
∞∑︁

𝛼=−∞

𝐷2 [𝛼]𝑒
2𝜋𝑖𝛾ℎ(𝛽−𝛼) = 𝑒2𝜋𝑖𝛾ℎ𝛽

∞∑︁
𝛼=−∞

𝐷2 [𝛼]𝑒
−2𝜋𝑖𝛾ℎ𝛼.

Отсюда пользуясь равенством (7) и учитывая, что 𝐷1 [𝛽] = 𝐷2 [−𝛽] получим

𝐷1 [𝛽] * 𝑒2𝜋𝑖𝛾ℎ𝛽 = −4𝑒2𝜋𝑖𝛾ℎ𝛽ℎ−2sin2 (𝜋ℎ𝛾) . (15)

В силу (14), (15) равенство (13) приводим к виду

𝐽2 (𝜔) = −4
∑︁
𝛾 ̸=0

𝑒2𝜋𝑖𝛾ℎ𝛽ℎ−2sin2 (𝜋ℎ𝛾)

(2𝜋𝑖𝛾)2
· 𝑒

2𝜋𝑖(𝜔−𝛾) − 1

2𝜋𝑖 (𝜔 − 𝛾)
=

=
∑︁
𝛾 ̸=0

(︂
sin (𝜋ℎ𝛾)

𝜋ℎ𝛾

)︂2

· 𝑒
2𝜋𝑖(𝜔−𝛾) − 1

2𝜋𝑖 (𝜔 − 𝛾)
.

Учитывая (11), (15) равенство (9) приводим

𝑜

𝐶 [𝛽] = ℎ
𝑒2𝜋𝑖𝜔 − 1

2𝜋𝑖𝜔
+ ℎ

∑︁
𝛾 ̸=0

(︂
sin (𝜋ℎ𝛾)

𝜋ℎ𝛾

)︂2

· 𝑒
2𝜋𝑖(𝜔−𝛾) − 1

2𝜋𝑖 (𝜔 − 𝛾)
. (16)

Так, как
𝛾 ∈ 𝑍∖0,
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тогда
𝑒2𝜋𝑖(𝜔−𝛾) − 1 = 𝑒2𝜋𝑖𝜔 − 1.

Тогда (16) примет вид

𝑜

𝐶 [𝛽] = ℎ
𝑒2𝜋𝑖𝜔 − 1

2𝜋𝑖𝜔

(︃
1

𝜔
+
∑︁
𝛾 ̸=0

1

𝜔 − 𝛾

(︂
sin (𝜋ℎ𝛾)

𝜋ℎ𝛾

)︂2
)︃
.

Отсюда при 𝜔 → 0 следует, что
𝑜

𝐶 [𝛽] = ℎ. И при 𝜔 → 𝛾, где 𝛾 ∈ 𝑍∖0

𝑜

𝐶 [𝛽] = ℎ

(︂
sin (𝜋𝜔ℎ)

𝜋𝜔ℎ

)︂2

𝑒2𝜋𝑖𝜔ℎ𝛽.

Теорема 1 доказано полностью. Переходим к доказательству теорем 2. В этом
случая оптимальные коэффициенты определяется формулой

𝑜

𝐶 [𝛽] = ℎ

⎡⎣ 1∫︁
0

𝑒2𝜋𝑖𝜔𝑥𝑑𝑥+𝐷2 [𝛽] *
1∫︁

0

𝑒2𝜋𝑖𝜔𝑥𝐵4 (𝑥− ℎ𝛽) 𝑑𝑥

⎤⎦ , (17)

где

𝐵4 (𝑥) =
∑︁
𝜆̸=0

𝑒−2𝜋𝑖𝛾(𝑥−ℎ𝛽)

(2𝜋𝑖𝛾)4
. (18)

В силу (12) и (18) равенство (17) принимает следующий вид

∘
𝐶[𝛽] = ℎ

⎡⎢⎢⎢⎣𝑒2𝜋𝑖𝜔 − 1

2𝜋𝑖𝜔
+𝐷2[𝛽] *

∑︁
𝛾 ̸=0

1∫︀
0

𝑒2𝜋𝑖𝜔𝑥𝑒−2𝜋𝑖𝛾(𝑥−ℎ𝛽) 𝑑𝑥

(2𝜋𝑖𝛾)2

⎤⎥⎥⎥⎦ =

= ℎ

⎡⎣𝑒2𝜋𝑖𝜔 − 1

2𝜋𝑖𝜔
+
∑︁
𝛾 ̸=0

𝐷2[𝛽] *
𝑒2𝜋𝑖𝛾ℎ𝛽

(2𝜋𝑖𝛾)4

1∫︁
0

𝑒2𝜋𝑖(𝜔−𝛾)𝑥 𝑑𝑥

⎤⎦ .
Отсюда учитывая (14) имеем

∘
𝐶[𝛽] = ℎ

[︃
𝑒2𝜋𝑖𝜔 − 1

2𝜋𝑖𝜔
+
∑︁
𝛾 ̸=0

𝐷2[𝛽] *
𝑒2𝜋𝑖𝛾ℎ𝛽

(2𝜋𝑖𝛾)4
· 𝑒

2𝜋𝑖(𝜔−𝛾) − 1

2𝜋𝑖(𝜔 − 𝛾)

]︃
=

= ℎ

[︃
𝑒2𝜋𝑖𝜔 − 1

2𝜋𝑖𝜔
+
∑︁
𝛾 ̸=0

(︀
𝑒2𝜋𝑖(𝜔−𝛾) − 1

)︀
𝐷2[𝛽] * 𝑒2𝜋𝑖𝛾ℎ𝛽

2𝜋𝑖(𝜔 − 𝛾) (2𝜋𝑖𝛾)4

]︃
.

(19)

Пользуясь формулой (8) и учитывая, что 𝐷1 [𝛽] = 𝐷2 [−𝛽], вычислим свертку

𝐷2 [𝛽] * 𝑒2𝜋𝑖𝛾ℎ𝛽 =
∞∑︁

𝛼=−∞

𝐷2 [𝛼] 𝑒
2𝜋𝑖𝛾ℎ(𝛽−𝛼) = 𝑒2𝜋𝑖𝛾ℎ𝛽

∞∑︁
𝛼=−∞

𝑒−2𝜋𝑖𝛾ℎ𝛼 =

= 𝑒2𝜋𝑖𝛾ℎ𝛽 · 48ℎ
−4sin4 (𝜋ℎ𝛾)

cos 2𝜋ℎ𝛾 + 2
.
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Учитывая полученное равенство (19) перепишем

𝑜

𝐶 [𝛽] = ℎ

[︃
𝑒2𝜋𝑖𝜔 − 1

2𝜋𝑖𝜔
+
∑︁
𝛾 ̸=0

𝑒2𝜋𝑖𝛾ℎ𝛽48ℎ−4sin4 (𝜋ℎ𝛾)

(2𝜋𝑖𝛾)44 (cos 2𝜋ℎ𝛾 + 2)
· 𝑒

2𝜋𝑖(𝜔−𝛾) − 1

2𝜋𝑖 (𝜔 − 𝛾)

]︃
=

= ℎ

[︃
𝑒2𝜋𝑖𝜔 − 1

2𝜋𝑖𝜔
+ 3

∑︁
𝛾 ̸=0

(︂
sin (𝜋ℎ𝛾)

𝜋ℎ𝛾

)︂4
(︀
𝑒2𝜋𝑖(𝜔−𝛾) − 1

)︀
2𝜋𝑖 (𝜔 − 𝛾)

𝑒2𝜋𝑖𝛾ℎ𝛽

cos 2𝜋ℎ𝛾 + 2

]︃
.

Учитывая, что 𝑒2𝜋𝑖(𝜔−𝛾) − 1 = 𝑒−2𝜋𝑖𝛾𝑒2𝜋𝑖𝜔 − 1 = 𝑒2𝜋𝑖𝜔 − 1. Тогда

𝑜

𝐶 [𝛽] = ℎ
𝑒2𝜋𝑖𝜔 − 1

2𝜋𝑖

(︃
1

𝜔
+ 3

∑︁
𝛾 ̸=0

(︂
sin (𝜋ℎ𝛾)

𝜋ℎ𝛾

)︂4
𝑒2𝜋𝑖𝛾ℎ𝛽

(𝜔 − 𝛾) (cos 2𝜋ℎ𝛾 + 2)

)︃
.

Отсюда при 𝜔 ∈ 𝑍∖0, имеем

𝑜

𝐶 [𝛽] = 3ℎ

(︂
sin (𝜋𝜔ℎ)

𝜋𝜔ℎ

)︂4
𝑒2𝜋𝑖𝜔ℎ𝛽

(cos 2𝜋𝜔ℎ+ 2)
.

А при 𝜔 = 0 следует, что
𝑜

𝐶 [𝛽] = ℎ.

Теорема 2 доказано полностью.
Доказательство теоремы 3. В этом случае имеем

𝑜

𝐶 [𝛽] = ℎ

⎡⎣ 1∫︁
0

𝑒2𝜋𝑖𝜔𝑥𝑑𝑥+𝐷3 [𝛽] *
1∫︁

0

𝑒2𝜋𝑖𝜔𝑥𝐵6 (𝑥− ℎ𝛽) 𝑑𝑥

⎤⎦ . (20)

Здесь

𝐵6 (𝑥) =
∑︁
𝜆 ̸=0

𝑒−2𝜋𝑖𝛾(𝑥−ℎ𝛽)

(2𝜋𝑖𝛾)6
. (21)

Теперь подставляя (21) в выражении (20) получим

𝑜

𝐶 [𝛽] = ℎ

⎡⎣ 1∫︁
0

𝑒2𝜋𝑖𝜔𝑥𝑑𝑥+𝐷3 [𝛽] *
1∫︁

0

𝑒2𝜋𝑖𝜔𝑥
∑︁
𝜆 ̸=0

𝑒−2𝜋𝑖𝛾(𝑥−ℎ𝛽)

(2𝜋𝑖𝛾)6
𝑑𝑥

⎤⎦ =

= ℎ

⎡⎣ 1∫︁
0

𝑒2𝜋𝑖𝜔𝑥𝑑𝑥+
∑︁
𝜆 ̸=0

𝐷3 [𝛽] * 𝑒2𝜋𝑖𝛾ℎ𝛽

(2𝜋𝑖𝛾)6

1∫︁
0

𝑒2𝜋𝑖𝜔𝑥𝑒−2𝜋𝑖𝛾𝑥𝑑𝑥

⎤⎦ =

= ℎ

⎡⎣ 1∫︁
0

𝑒2𝜋𝑖𝜔𝑥𝑑𝑥+
∑︁
𝜆 ̸=0

𝐷3 [𝛽] * 𝑒2𝜋𝑖𝛾ℎ𝛽

(2𝜋𝑖𝛾)6

1∫︁
0

𝑒2𝜋𝑖(𝜔−𝛾)𝑥𝑑𝑥

⎤⎦ .
Отсюда вычисляя интегралы имеем
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𝑜

𝐶 [𝛽] = ℎ

[︃
𝑒2𝜋𝑖𝜔 − 1

2𝜋𝑖𝜔
+
∑︁
𝛾 ̸=0

𝑒2𝜋𝑖(𝜔−𝛾) − 1

2𝜋𝑖 (𝜔 − 𝛾)
· 𝐷3 [𝛽] * 𝑒2𝜋𝑖𝛾ℎ𝛽

(2𝜋𝑖𝛾)6

]︃
. (22)

Теперь вычисляя свертку функций

𝐷3 [𝛽] , 𝑒2𝜋𝑖𝛾ℎ𝛽.

По определению свертки функций дискретного аргумента следует, что

𝐷3 [𝛽] * 𝑒2𝜋𝑖𝛾ℎ𝛽 =
∞∑︁

𝛼=−∞

𝐷3 [𝛼]𝑒
−2𝜋𝑖𝛾ℎ(𝛽−𝛼) = 𝑒2𝜋𝑖𝛾ℎ𝛽

∞∑︁
𝛼=−∞

𝐷3 [𝛼]𝑒
−2𝜋𝑖𝛾ℎ𝛼.

Отсюда в силу (4.6) получим

𝐷3 [𝛽] * 𝑒2𝜋𝑖𝛾ℎ𝛽 =
−265!ℎ−6sin6 (𝜋ℎ𝛾) 𝑒2𝜋𝑖𝛾ℎ𝛽

2 cos 4𝜋ℎ𝛾 + 52 cos 2𝜋ℎ𝛾 + 66
. (23)

Теперь подставляя в (22) в место 𝐷3 [𝛽] * 𝑒2𝜋𝑖𝛾ℎ𝛽 найденные формулой (23) имеем

𝑜

𝐶 [𝛽] = ℎ

[︃
𝑒2𝜋𝑖𝜔 − 1

2𝜋𝑖𝜔
+
∑︁
𝛾 ̸=0

𝑒2𝜋𝑖(𝜔−𝛾) − 1

2𝜋𝑖 (𝜔 − 𝛾) (2𝜋𝑖𝛾)6
· −2

65!ℎ−6sin6 (𝜋ℎ𝛾) 𝑒2𝜋𝑖𝛾ℎ𝛽

2 cos 4𝜋ℎ𝛾 + 52 cos 2𝜋ℎ𝛾 + 66

]︃
=

= ℎ

[︃
𝑒2𝜋𝑖𝜔 − 1

2𝜋𝑖𝜔
+
∑︁
𝛾 ̸=0

𝑒2𝜋𝑖(𝜔−𝛾) − 1

2𝜋𝑖 (𝜔 − 𝛾) (2𝜋𝑖𝛾)6
·
(︂
sin (𝜋ℎ𝛾)

𝜋ℎ𝛾

)︂6

· 60𝑒2𝜋𝑖𝛾ℎ𝛽

cos 4𝜋ℎ𝛾 + 26 cos 2𝜋ℎ𝛾 + 33

]︃
.

Отсюда при 𝜔 ∈ 𝑍∖0 имеем

𝑜

𝐶 [𝛽] = 60ℎ

(︂
sin (𝜋ℎ𝛾)

𝜋ℎ𝛾

)︂6
𝑒2𝜋𝑖𝜔ℎ𝛽

cos 4𝜋ℎ𝛾 + 26 cos 2𝜋ℎ𝛾 + 33
, 𝛽 = 1, 2, ..., 𝑁.

А при 𝜔 = 0 следует, что
𝑜

𝐶 [𝛽] = ℎ, 𝛽 = 1, 2, ..., 𝑁.

И так мы доказали теорему 3 полностью

5 Заключение
В данной работе с помощью вариационных методов построены оптимальные квад-

ратурные формулы в пространствах Соболева комплекснозначных периодических
функций для приближенного вычисления быстроосцилирующих интегралов. В пери-
одических пространствах комплекснозначных функций где скалярное произведение
и норма функций определяются с помощью производных порядка 𝑚, при 𝑚 = 1, 𝑚 =
= 2,𝑚 = 3. В пространствах 𝐻̃(1)

2 (0, 1), 𝐻̃(2)
2 (0, 1) и 𝐻̃(3)

2 (0, 1) найдены аналитический
вид оптимальных коэффициентов построенных квадратурных формул.
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Integrals of rapidly oscillating functions arise mainly in the theory of special functions
and Fourier analysis, but also in other applied and computational sciences and engineer-
ing, for example, in theoretical physics, acoustic scattering, quantum chemistry, transport
theory, electromagnetism, telecommunications, mechanics, and so on.The computation of
integrals of rapidly oscillating functions is often carried out using the Filon method. The
Filon method resembles Simpson’s quadrature formula. However, whereas in Simpson’s
method the entire integrand is approximated by a parabola, in the Filon method only
the function 𝑓(𝑥) is approximated by a parabola. In this way, Filon derived a quadrature
formula with coefficients that depend on 𝜔. In this work, optimal quadrature formulas
in the Sobolev space of complex-valued periodic functions will be constructed for the
approximate computation of rapidly oscillating integrals.
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