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Hypersingular integral equations are encountered in a number of fields, such as the dy-
namics of air and fluid flow, elasticity, and wave propagation theory. Analytical solutions
for these integral equations exist, but the solutions themselves are also expressed through
singular integrals. Therefore, it becomes necessary to develop formulas for the approx-
imate calculation of these solutions, and such formulas have been developed. Among
these formulas, very few are highly accurate. However, they are not optimal. Our work
is devoted to constructing an optimal quadrature formula for the approximate calculation
of the analytical solutions of a hypersingular integral equation.
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1 Introduction

Hypersingular integral equations are a type of integral equation where the kernel—the
function inside the integral-is highly "singular,"meaning it has an infinitely large value at
a certain point. This singularity is of a higher order than what’s found in more common
singular integral equations. These equations are a powerful tool for analyzing complex,
three-dimensional problems in various fields, including:

Aerodynamics and Fluid Dynamics: Studying how air and fluids move around objects;
Elasticity: Analyzing how materials deform under stress; Wave Theory: Understanding
the diffraction of electromagnetic and acoustic waves; Ecology: Modeling certain environ-
mental systems;

Often, hypersingular integral equations are derived from Neumann boundary value
problems. These are mathematical problems for equations like the Laplace or Helmholtz
equations, where you’re given the values of the function’s derivative on the boundary of
a region, not the function’s value itself. The process of converting these boundary value
problems into integral equations involves using a concept called the double-layer potential.

We consider the following hypersingular integral equation first kind
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here the functions g(z) and ¢(x) satisfy the Holder condition (or belongs to the class H),
—1 <t < 1. We integrate the left side of the integral equation (1) by parts and obtain
the following

§E2+ffé+/&%%%mz¢@, (2)

For integral equation (1) or (2) to have a unique solution in the given class, the value of
the function g(x) at the boundaries of the segment must be equal to zero, i.e.:

9(1) = g(=1) =0

/dj@ﬂx:O (3)

1
We introduce denotation ¢'(x) = p(z), and get

/1 Pz) de =p(t), —1<t<]1. (4)

1 xr — t
The unique exact analytical solution of the integral equation (4) that satisfies condition
(3) is equal to the following [13]

/ V1= 2ple) g, 5)
V1-12 r—t
The function under this integral (5) is very complex in practical problems. As a result, it
is impossible to find the antiderivative of this function. Therefore, to approximate such
singular integral, scientists have used the following methods: Discrete vortex method [7,
12|, Interpolation methods [2,8,9, 11|, Piecewise interpolation method [3,4, 6] and other
numerical quadrature methods [5,10]. The Discrete Vortex Method employs a singular
point in the middle of successive nodes. Numerous scientific studies have focused on
constructing quadrature formulas using Interpolation methods. These formulas use the
roots of Chebyshev polynomials of the first kind as nodes. However, in several physical
applications, singular integral equations need to be solved even when the function g is
not very smooth or unknown. In such cases, Gaussian and transformation methods work
efficiently only if the function g is smooth enough. The accuracy of numerical integration
is significantly influenced by mesh selection. The Gaussian method’s utility is constrained
since it relies on approximating integrals at Gaussian points. Conversely, the Newton-
Cotes method becomes impractical when the singular point is in close proximity to the
quadrature formula nodes and even more so when it coincides with them. Scholars have
underscored the paramount importance of mesh selection in guaranteeing the accuracy
of numerical integration. During the initial phases, considerable emphasis was placed on
mesh selection to position the singular point at the centre of a subinterval, highlighting its
significant impact on the overall accuracy of the integration. But the methods mentioned
above are not an optimal approximation technique. In the present paper, we construct
an optimal quadrature formula in the space Lgl)(—l, 1).

p(t) =

2 Statement of the problem

We consider the following quadrature formula

/\/ﬂso i

—1<t<1 6
P (6)
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in the Sobolev space Lgl)(—l, 1). This space is a Hilbert space of classes of all real valued
functions ¢ defined in the interval [—1, 1] that differ by a polynomial of degree first and
square integrable with derivative of order two. Here C[3] are the coefficients, x5 are the
nodes of the quadrature formula, N is a natural number.

The following difference is called the error of quadrature formula (6):

/ mgp dr - ClBlp(zs) = / 0(z)p(z)dz,

=0 e
where
vV 1-— x2 -1 1]
l(x) = x—t ZC’ (x — xp), (7)
€[-1,1](«) is the indicator of the interval [—1,1], 0 is the Dirac delta-function, ¢(x) is the

error functional of quadrature formula (7).
Since the functional (7) defined in the space Lgl)(—l, 1) [14], then we have

(,1) = 0. (8)

The main aim of the present paper is to construct optimal quadrature formulas in
the sense of Sard of the form (1) in the space Lgl)(—l, 1) by the Sobolev method for
approximate integration of the Cauchy type singular integral. This means to find the
coefficients C[] which satisfy the following equality

0L = inf ||| LV 9
16| Ly C[mlllzll (9)

Thus, in order to construct optimal quadrature formulas in the form (6) in the sense
of Sard we have to consequently solve the following problems.

Problem 1. Find the norm of the error functional (7) of the quadrature formula (6)
in the space L{*(—1,1).

Problem 2 Find the coefficients C[5] which satisfy the equality (9).

In the works [1,15,16] for the norm of the error functional the following form was
obtained

8 (11 = | 3 cpep

£=0 'y:O

(10)
B \/1—x2|x—x5| \/1—:1:2\/1— 2|z — vy .
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Thus Problem 1 is solved for quadrature formulas of the form (6) in the space Lél)(—
~1,1).

3 The main results

Assume that the nodes x5 of the quadrature formula (6) are fixed. The error functional
(7) satisfies conditions (8). The norm of the error functional ¢(x) is a multidimensional
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function with respect to the coefficients C[3] (8 = 0, N). For finding the point of the con-
ditional minimum of the expression (10), under the conditions (8), we apply the Lagrange
method.

We denote C = (C[0],C[1],...,C[N]) and A. Consider the function

T(C,\) = [[€]2 — 22(((x), 1).

Equating to zero the partial derivatives of W(C,\) by C[5] (8 = 0, N) and A, we get
the following system of linear equations

ZC’M@—FA—J‘H(M), g=0,1,2,..., N, (11)
v=0
N
v=0
where
V1—22%lr —x
/ (x |—t B| o (13)
m
Jo = / Tr—1 (14)

and Clv|, v=0,1,..., N and A, are unknowns.

The system (11)—(12) has a unique solution and this solution gives the minimum to
14]|* under the conditions (8). The uniqueness of the solution of such type of systems was
discussed in [14, 17].

We give the algorithm for solution of system (11)-(12) when the nodes 4 are equally
spaced, i.e., zg = hf — 1, h = %, N > 0. Here we use similar method suggested by S.L.
Sobolev [14] for finding the coefficients of optimal quadrature formulas in the Sobolev
space Lél)(—l, 1).

Suppose that C[5] = 0 when § < 0 and § > N. Using the definition of convolution,
we rewrite system (11)-(12) in the following form:

Gi(hB) * C[B]+ A= fi(hB), B=0,1,..,N, (15)
20[5] = Yo, (16)
B=0
where h "
G (hB) = ( B)sgn( B

A is an arbitrary constant, sgn(hf3) is the signum function.

Thus we have the following problem.

Problem 3. Find the discrete function C[f] and polynomial A of degree zero which
satisfy the system (15)-(16).

Further we investigate Problem 3. Instead of C'[5] we introduce the following functions

v(hf) = G1(hB) * C[B], (17)
w(hB) = v (hB) + A (18)
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In such statement the coefficients C[f] are expressed by the function u(hf), i.e. taking
into account

hD1(hB3) x u(hB3) = 6(hB),

where
07 |/8| 2 27
D1<hﬁ) = h'727 |/8| = 17 (19>
—2n7%, B =0.

There are (19) and (18) , for the coefficients we have
C[B] = hD1(hf3) * u(hp). (20)

Thus, if we find the function u(hf3), then the coefficients C[f] will be found from
equality (20). To calculate the convolution (20) it is required to find the representation
of the function u(hp) for all integer values of 5. From equality (15) we get that u(hf) =
= fi(hB) when h3—1 € [-1,1],i.e. f=0,1,...,N. Now we need to find the representation
of the function u(hf) when 5 < 0 and 5> N.

Since C[fB] = 0 when hg ¢ [—1,1] then C[f] = hDy(hp) * u(hf) =0, hB ¢ [—1,1].

Now we calculate the convolution v(hf) = G1(hf) *x C[f] when f < 0 and 5 > N.

_ [h8|

Suppose 3 < 0, then taking into account that G1(h3) = 5+ and equality (16), we have

v(hf) = —%(hﬁ)go —po+ A (21)

Similarly, in the case 8 > N for the convolution v(hf3) = G1(hf) * C[5] we obtain

1
o(hB) = 5(hB)go +po + A (22)
We denote
aa = —po + )\, (23)
ag =po+ . (24)

Taking into account (18), (21) and (22) we get the following problem
Problem 4. Find the solution of the equation

hDy(hf) = u(hB) =0, hB ¢ [-1,1], (25)
having the form:
~3(hB)go+ag. B <0,
u(hB) =q fi(hB), 0< B <N, (26)
3(hB)go+ag, B> N.

Here a, and aj are unknown constant (or polynomials of degree zero) with respect to hf.
If we find a, and ag then from (23), (24) we have

= %(CLE + aar), (27)
po = 2(ad —a3). (25)

2
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Unknowns a, and af can be found from equation (25), using the function D;(hf3)
defined by (19). Then we obtain explicit form of the function w(hf) and from (20) we
find the coefficients C[f]. Furthermore from (27) we get \.

Thus Problem 4 and respectively Problems 3 will be solved.

Then, using the above algorithm, we obtain explicit formulas for coefficients of the
optimal quadrature formula (6). It should be noted that the quadrature formula (6) is
exact for linear function.

The following holds

Theorem. Coefficients of the optimal quadrature formulas (6), with equally spaced

nodes in the space Lél)(—l, 1), have the following form

Cmy:h*{hw)+§(%?+%—i)—gwd,
ol = bt [fl(hﬁ by —2£(hB) + fl<h6+h>] 5-TN=T,

CMH:h*{ﬁﬂ—hy—%@ﬁ—2ﬁ—m—g%4,
where

hG —1

‘ﬁWB%:( —¢) 1—(ma—nz+(ﬁ—¢mﬁ_1y—%>acmnmﬁ—1w—

1—t(h8—1)+ /0 =) (1 — (h5 —1)?)
hB—1—t

+(t — (hB = 1))V1 — 2In

Y

Proof. From (26) with =0 and f = N we immediately obtain (26), i.e.
ay = fl(())?

ag = f(1) — go.
This means that we have obtained an explicit form of the function u(hf).
Further, using (19) and (26), from (20) calculating the convolution hD;(hf3) * u(h5)

for § =0, N, respectively, we obtain results of the theorem. Theorem 1 is proved. O
Remark 1. So, the approximate calculation of equality (5) is as follows

1) 2 s 3 ClBle(ay)
8=0

4 Conclusion

In the introduction of the article, several problems in various fields were listed. It
was stated that the solutions to these problems lead to first-kind hypersingular integral
equations. Since there are no exact analytical methods to solve these types of integral
equations, approximate solution methods have been proposed. In this work, we have
provided a new method to partially overcome the shortcomings of the proposed methods.
That is, an optimal quadrature formula was constructed to approximate singular integrals
with high accuracy, and its analytical form was found.
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