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В работе рассматривается численное решение плоскорадиальной граничной об-
ратной задачи для уравнения релаксационной фильтрации жидкости в пористой
среде в упругом режиме. Актуальность обусловлена широким применением релак-
сационной фильтрации в гидрогеологии, нефтегазодобыче и подземной гидромеха-
нике, где важны идентификация параметров среды и восстановление неизвестных
граничных воздействий. Такие граничные обратные задачи являются некорректны-
ми: малые ошибки исходной информации могут существенно искажать результат,
поэтому требуются устойчивые численные методы. Для решения использован мар-
шевый метод Де Сузы, однако вычислительные эксперименты показали, что его точ-
ность заметно зависит от расстояния между точкой задания измеренных «началь-
ных данных» и искомой границей: при увеличении расстояния погрешность растёт
из-за накопления ошибок и нестабильности реконструкции. Для повышения устой-
чивости применены сглаживающие сплайны, которые фильтруют высокочастотный
шум и стабилизируют восстановление граничных значений. В итоге получены более
устойчивые решения с приемлемой точностью даже при значительных погрешностях
входных данных, что подтверждает перспективность сочетания маршевых методов
и сглаживания для некорректных граничных обратных задач релаксационной филь-
трации.
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1 Введение
Одна из первых моделей релаксационной фильтрации жидкости в пористой среде

была предложена в [1], где учитываются релаксационные явления градиента давле-
ния относительно скорости фильтрации. На основе общих предположений теории
упругого режима с использованием уравнения неразрывности и закона Дарси выве-
дено следующее уравнение пьезопроводности
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, (1)
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где 𝑝 – текущее давление (МПа); 𝑡 – время; 𝑥 – координата; 𝜆𝑝 – время релаксации
градиента давления; κ – коэффициент пьезопроводности; 𝑘 – проницаемость среды;
𝜇 – коэффициент вязкости; 𝑚 – пористость; 𝛽ж, 𝛽с – коэффициенты сжимаемости
жидкости и пласта соответственно.

В [2] учтены релаксационные явления как по градиенту давления, так и скорости
фильтрации. Аналогично (1) выведено уравнение нестационарной фильтрации в виде
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где 𝜆𝑣 – время релаксации скорости фильтрации.
Дальнейшее развитие этой теории было осуществлено в [3, 4]. Некоторые инте-

гральные модели фильтрации, учитывающие эффекты памяти, предложены в [5, 6].
С относительно недавнего времени стали исследоваться обобщения моделей (1), (2)
с применением дробного дифференциального исчисления [7]. В [8] показано, что
дробно-дифференциальные модели релаксационной фильтрации по сравнению с мо-
делями типа (1), (2) позволяют в более широком спектре исследовать релаксацион-
ные явления.

Прямые задачи для уравнений (1), (2) исследованы достаточно хорошо. Установ-
лено влияние параметров 𝜆𝑝, 𝜆𝑣 на распределение давления и скорости фильтрации
в среде. Однако, для указанных выше моделей обратные задачи изучены мало, в
частности, не получены априорные оценки их устойчивости.

В работах [9, 10] решена граничная обратная задача для уравнения релаксацион-
ной фильтрации (1). В [11] численно решена плоскорадиальная гранично-обратная
задача для уравнения релаксационной фильтрации
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, 𝑡 ∈ (0, 𝑇 ] , 𝑟𝑐 < 𝑟 < 𝑅, (3)

где 𝑟 – координата.
В работе [12] численно решена гранично-обратная задача для уравнения неста-

ционарной релаксационной фильтрации (2). В [13] предложен численный метод
решения обратной задачи определения дебитов скважин по заданным забойным
давлениям для многомерной модели течения слабосжимаемой жидкости в упруго-
деформируемой пористой среде. В [14] нелинейная обратная задача теплопроводно-
сти была решена с использованием итерационного метода сопряженных градиентов.

В данной работе рассмотрена плоскорадиальная граничная обратная задача для
уравнения нестационарной релаксационной фильтрации жидкости в пористой среде с
учетом релаксационных явлений как по градиенту давления, так и по скорости филь-
трации. Задача решена численно с различными возмущенными исходными данными.
Оценена устойчивость решения задачи в зависимости от погрешности исходных дан-
ных.

2 Постановка граничной обратной задачи
Рассмотрим плоскорадиальную граничную обратную задачу для уравнения ре-

лаксационной фильтрации. Считаем, что в точке 𝑟 = 𝑅 задано граничное условие и
в точке 𝑟 = 𝑑, 𝑑 ∈ (𝑟𝑐, 𝑅) известно изменение давления жидкости. Начальное распре-
деление давления также известно: 𝑝 (𝑟, 0) = 𝑝0, 𝑝0 = 𝑐𝑜𝑛𝑠𝑡. Необходимо определить
давление в точке 𝑟 = 𝑟𝑐. Эту подстановку можно интерпретировать как определе-
ние характеристик фильтрации в нефтедобывающей скважине ДС (рис. 1) на основе
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данных, полученных на наблюдательной скважине – НС. Задача сводится к опреде-
лению поля давления области [𝑟𝑐, 𝑑) на основе измерений давления в НС (𝑟 = 𝑑).

Рис. 1 Схема расположения добывающей и наблюдательной скважин (ДС, НС)

Пусть нам дано уравнение релаксационной фильтрации жидкости
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, 𝑡 ∈ (0, 𝑇 ] , 𝑟𝑐 < 𝑟 < 𝑅, (4)

и дополнительные условия

𝑝 (𝑟, 0) = 𝑝0, 𝑟 ∈ [𝑟𝑐, 𝑅] , (5)

𝜕𝑝

𝜕𝑡
(𝑟, 0) = 0, 𝑟 ∈ [𝑟𝑐, 𝑅] , (6)

𝑝 (𝑑, 𝑡) = 𝑧 (𝑡) , 𝑡 ∈ (0, 𝑇 ] , (7)

𝑝 (𝑅, 𝑡) = 𝑝0, 𝑡 ∈ (0, 𝑇 ] , (8)

где 𝑧 (𝑡) – заданная функция.
Для решения обратной задачи необходимо задать 𝑧 (𝑡) в (7). Для этого в [𝑟𝑐, 𝑅]

для (4) решим прямую задачу с заданным граничным условием

𝑄0 = 2𝜋𝐻
𝑘

𝜇
𝑟
𝜕𝑝

𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑟𝑐

, (9)

где 𝑄0 – дебит скважины; 𝐻 – толщина пласта. После определения поля давления
𝑧 (𝑡) определяем как 𝑧 (𝑡) = 𝑝 (𝑑, 𝑡). Следует отметить, что в реальных условиях 𝑧 (𝑡)
определяется экспериментально. Мы же здесь 𝑧 (𝑡) определяем из решения соответ-
ствующей прямой задачи, но интерпретируем ее как экспериментально определенную
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функцию с некоторой погрешностью. Погрешность моделируем с помощью генера-
ции псевдослучайных величин.

3 Алгоритм численного решения задачи
Для решения прямой задачи (4), (5), (6), (8), (9) применим метод конеч-

ных разностей [15]. Для начала определяем область 𝐷, т.е. 𝐷 = 𝐷1 ∪ 𝐷2 =
= {𝑟𝑐 ⩽ 𝑟 ⩽ 𝑑, 0 ⩽ 𝑡 ⩽ 𝑡𝑚} ∪ {𝑑 ⩽ 𝑟 < 𝑅, 0 ⩽ 𝑡 ⩽ 𝑡𝑚}, затем вводим сетку

𝜔ℎ𝜏 = {(𝑟𝑖, 𝑡𝑗) , 𝑟𝑖 = 𝑟𝑐 + 𝑖ℎ, ℎ = (𝑅− 𝑟𝑐) /𝑁 ;

𝑟𝑖−1/2 = 𝑖ℎ− ℎ/2; 𝑟𝑖+1/2 = 𝑖ℎ+ ℎ/2;

𝑟𝑛 = 𝑛ℎ = 𝑑; 𝑡𝑗 = 𝑗𝜏 ;ℎ = 𝑅/𝑁 ; 𝜏 = 𝑇/𝑀 ;

𝑖 = 0, 1, ..., 𝑛− 1, 𝑛, 𝑛+ 1, ..., 𝑁 ; 𝑗 = 0, 1, ...,𝑀}

Сначала аппроксимируем задачу (4), (5), (6), (8), (9):

𝑝𝑗+1
𝑖 − 𝑝𝑗−1

𝑖

2𝜏
+ 𝜆𝑣

𝑝𝑗+1
𝑖 − 2𝑝𝑗𝑖 + 𝑝𝑗−1

𝑖

𝜏 2
=

= κ

[︃
1

𝑟𝑖ℎ

(︃
𝑟𝑖+1/2

𝑝𝑗+1
𝑖+1 − 𝑝

𝑗+1
𝑖

ℎ
− 𝑟𝑖−1/2

𝑝𝑗+1
𝑖 − 𝑝𝑗+1

𝑖−1

ℎ

)︃
+

+
𝜆𝑝
𝜏𝑟𝑖ℎ

{︃(︃
𝑟𝑖+1/2

𝑝𝑗+1
𝑖+1 − 𝑝

𝑗+1
𝑖

ℎ
− 𝑟𝑖−1/2

𝑝𝑗+1
𝑖 − 𝑝𝑗+1

𝑖−1

ℎ

)︃
−

−

(︃
𝑟𝑖+1/2

𝑝𝑗𝑖+1 − 𝑝
𝑗
𝑖

ℎ
− 𝑟𝑖−1/2

𝑝𝑗𝑖 − 𝑝
𝑗
𝑖−1

ℎ

)︃}︃]︃
.

𝑖 = 1, 2, ..., 𝑁 − 1, 𝑗 = 0, 1, ...,𝑀 − 1, (10)

𝑝0𝑖 = 𝑝0, 𝑖 = 0, 1, ..., 𝑁, (11)

𝑝1𝑖 − 𝑝0𝑖
𝜏

= 0, 𝑖 = 0, 1, ..., 𝑁, (12)
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Напишем разностное уравнение (10) следующим образом:
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что приводит к системе линейных уравнений
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Система (15) при (11), (12), (13), (14) решается методом прогонки.
Из уравнения (14) находим 𝑝𝑗+1

0 , т.е.

𝑝𝑗+1
0 = 𝑝𝑗+1

1 − 𝑄0𝜇ℎ

2𝜋𝐻𝑘𝑟𝑐
.

Отсюда определяем коэффициенты прогонки, т.е.

𝑝𝑗+1
0 = 𝛼1𝑝

𝑗+1
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𝛼1 = 1, 𝛽1 = −
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, (16)

𝛼𝑖+1 =
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𝑖 = 1, 2, ..., 𝑁 − 1, 𝑗 = 0, 1, ...,𝑀 − 1.

и вычисляем значения давления
𝑝𝑗+1
𝑁 = 𝑝0,

𝑝𝑗+1
𝑖 = 𝛼𝑖+1𝑝

𝑗+1
𝑖+1 + 𝛽𝑖+1, (18)

𝑖 = 𝑁 − 1, 𝑁 − 2, ..., 1, 0, 𝑗 = 0, 1, ...,𝑀 − 1.

В качестве исходных данных для граничной обратной задачи, как указывалось
выше, принимаются значения давления в точке 𝑑, т.е. 𝑧 (𝑡𝑗) = 𝑝𝑗𝑛. Чтобы оценить
влияние ошибок в исходных данных на решение граничной обратной задачи вместо
функции 𝑧 (𝑡) используем возмущенную функцию

𝑧𝛿 (𝑡) = 𝑧 (𝑡) + 2𝛿 (𝜎 (𝑡)− 0, 5) ,

где 𝛿 – погрешность, 𝜎 (𝑡) – равномерно распределенная случайная величина на от-
резке [0, 1]. На рис. 2 представлены графики функций 𝑧𝛿 (𝑡) при различных значениях
𝑑 и 𝛿.
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Рис. 2 Графики функций 𝑧 (𝑡) и 𝑧𝛿 (𝑡) при различных 𝑑: a) при 𝛿 = 0, b) при 𝛿 = 10−5, c)
при 𝛿 = 10−4, d) при 𝛿 = 10−3

Для решения обратной задачи применим маршевый метод Де Сузы [16]. Из урав-
нения (10) находим 𝑝𝑗+1

𝑖−1 т.е.

𝑝𝑗+1
𝑖−1 =

𝐶𝑖𝑝
𝑗+1
𝑖 −𝐵𝑖𝑝

𝑗+1
𝑖+1 − 𝐹

𝑗
𝑖

𝐴𝑖

, 𝑖 = 𝑛, 𝑛− 1, ..., 1, 𝑗 = 0, 1, ...,𝑀 − 1. (19)

Отсюда можно найти значение давления в ДС.

Рис. 3 Вычислительный шаблон схемы метода Де Сузы (19)

4 Результаты и обсуждение
Для численного решения задачи (4), (5), (6), (8), (9) использованы следующие

значения исходных данных: 𝑁 = 400,𝑀 = 250, 𝐻 = 10 м, 𝑅 = 200 м, 𝑟𝑐 = 0.1 м, 𝑇 =
= 200 с, 𝑘 = 10−12 м2,κ = 3 · 10−1 м2/с, 𝑝0 = 25 МПа, 𝜇 = 25 · 10−9 МПа · с, 𝑄0 =
= 100 м3/сут, 𝜆𝑝 = 1000 с, 𝜆𝑣 = 500 с.

На рис. 4 представлены результаты численного расчёта точных и приближённых
решений функции давления 𝑝 (𝑡, 0) при значении параметра 𝛿 = 0 и различных зна-
чениях расстояния 𝑑. Сравнение, представленное на подрисунках a)–d), показывает,
что по мере увеличения 𝑑 приближённые решения граничной обратной задачи прак-
тически совпадают с точными.
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Рис. 4 Результаты решения обратной задачи при 𝛿 = 0: a) при 𝑑 = 20 м, b) при 𝑑 = 25 м,
c) при 𝑑 = 30 м, d) при 𝑑 = 40 м

На рис. 5 представлены результаты расчетов точных и приближенных решений
𝑝 (𝑡, 0) при значении параметра 𝛿 = 10−5 и различных значениях расстояния 𝑑. С
увеличением расстояния 𝑑 наблюдается существенное возрастание погрешности при-
ближённых решений, что выражается в усилении колебаний и отклонений от точного
решения. Это особенно ярко проявляется на подрисунках c) и d), где приближённое
решение значительно расходится с точным.
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Рис. 5 Результаты решения обратной задачи при 𝛿 = 10−5: a) при 𝑑 = 20 м, b) при 𝑑 = 25
м, c) при 𝑑 = 30 м, d) при 𝑑 = 40 м

На рис. 6 представлены результаты расчетов 𝑝 (𝑡, 0) при 𝛿 = 10−4 и различных
𝑑. С увеличением расстояния 𝑑 наблюдается значительное усиление возмущённости
приближённого решения. По сравнению с результатами на рис. 5, ошибки становятся
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более выраженными как по амплитуде, так и по характеру колебаний. Особенно
заметное расхождение между точным и приближённым решениями фиксируется на
подрисунках c) и d), где приближённый результат приобретает явно неустойчивый
характер.
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Рис. 6 Результаты решения обратной задачи при 𝛿 = 10−4: a) при 𝑑 = 20 м, b) при 𝑑 = 25
м, c) при 𝑑 = 30 м, d) при 𝑑 = 40 м

На рис. 7 представлены результаты расчетов 𝑝 (𝑡, 0) при 𝛿 = 10−3 и различных 𝑑.
Анализ данных показывает, что с увеличением расстояния 𝑑 и погрешности наблю-
дается значительное возрастание возмущенности численного решения по сравнению
с результатами, представленными на рис. 6, что требует применения сглаживающих
сплайнов для улучшения точности приближенного решения.
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Рис. 7 Результаты решения обратной задачи при 𝛿 = 10−3: a) при 𝑑 = 20 м, b) при 𝑑 = 25
м, c) при 𝑑 = 30 м, d) при 𝑑 = 40 м

На рис. 8-10 представлены результаты расчетов точных и приближенных решений
при различных значениях 𝛿 с использованием сглаживающих сплайнов.
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На рис. 8 представлены результаты расчетов точных и приближенных решений
𝑝 (𝑡, 0) при 𝛿 = 10−5 и различных значениях 𝑑 с использованием сглаживающих
сплайнов. Из рис. 8 a)-d) видно, что с помощью сглаживающих сплайнов при опреде-
ленных значениях параметров позволяет получить более устойчивые решения. Од-
нако полностью восстановить граничные условия не удается.
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Рис. 8 Результаты решения обратной задачи со сглаживающим сплайном при 𝛿 = 10−5: a)
при 𝑑 = 20 м, параметр сглаживания = 1 · 10−5 b) при 𝑑 = 25 м, параметр сглаживания
= 1 · 10−8 c) при 𝑑 = 30 м, параметр сглаживания = 1 · 10−9 d) при 𝑑 = 40 м, параметр
сглаживания = 1 · 10−9

Рис. 9 демонстрирует результаты расчетов 𝑝 (𝑡, 0) при 𝛿 = 10−4 и различных зна-
чениях 𝑑. Как видно из рис. 9 a) – d), применение сглаживающих сплайнов в некото-
рых случаях позволяет получить более устойчивые решения. При этом приближен-
ное решение хорошо согласуется с точным, что подтверждает его применимость для
моделирования рассматриваемого процесса.
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Рис. 9 Результаты решения обратной задачи со сглаживающим сплайном при 𝛿 = 10−4: a)
при 𝑑 = 20 м, параметр сглаживания = 1 · 10−6 b) при 𝑑 = 25 м, параметр сглаживания
= 5 · 10−7 c) при 𝑑 = 30 м, параметр сглаживания = 5 · 10−7 d) при 𝑑 = 40 м, параметр
сглаживания = 5 · 10−7
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На рис. 10 представлены результаты расчётов 𝑝 (𝑡, 0) при 𝛿 = 10−3 и различных
значениях 𝑑. Анализ представленных графиков из рис. 10 a)–d) показывает, что при-
менение сглаживающих сплайнов также способствует получению более устойчивых
решений в данных случаях. Это подтверждает эффективность данных подходов для
стабилизации численных решений и уменьшения влияния возможных возмущений в
исходных данных.
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Рис. 10 Результаты решения обратной задачи со сглаживающим сплайном при 𝛿 = 10−3:
a) при 𝑑 = 20 м, параметр сглаживания = 5 · 10−5 b) при 𝑑 = 25 м, параметр сглаживания
= 5 · 10−5 c) при 𝑑 = 30 м, параметр сглаживания = 5 · 10−5 d) при 𝑑 = 40 м, параметр
сглаживания = 5 · 10−5

5 Заключение
В данной работе численно решена плоскорадиальная граничная обратная задача

для уравнения нестационарной релаксационной фильтрации жидкости в пористой
среде. Для решения поставленной задачи использован маршевый метод Де Сузы.
Дополнительная информация для решения обратной задачи подготовлена на основе
квазиреального численного эксперимента. В исходные значения внесены возмущения
со случайными ошибками. В случае возмущенных исходных данных искомое решение
определяется с погрешностью, соответствующей порядку возмущения. Чтобы умень-
шить погрешность использован сглаживающие сплайны. При относительно малых 𝑑
и погрешности 𝛿, погрешность определения граничного условия уменьшается.
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The paper addresses a numerical solution of a plane–radial boundary inverse problem
for the relaxation filtration equation describing fluid flow in an elastically deformable
porous medium. The study is motivated by the widespread occurrence of relaxation
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filtration in hydrogeology, oil and gas production, and subsurface hydromechanics, where
reliable identification of medium parameters and reconstruction of unknown boundary
actions are essential. Such boundary inverse problems are ill-posed: small perturbations
in the input data may cause large deviations in the recovered solution, which makes stable
and accurate numerical techniques crucial. The inverse problem is solved using De Souza’s
marching method; however, computational experiments show that its accuracy strongly
depends on the distance between the measurement point providing the “initial data” and
the target boundary. As this distance increases, the error grows due to error accumulation
and the intrinsic instability of boundary reconstruction. To improve stability and reduce
errors, smoothing splines are employed. The spline approximation effectively suppresses
high-frequency noise and stabilizes the recovery of boundary values. As a result, more
stable numerical solutions with acceptable accuracy are obtained even under substantial
data errors, demonstrating the promise of combining marching methods with smoothing
procedures for ill-posed boundary inverse problems of relaxation filtration.
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