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This paper proposes a Context-adaptive Audio-Visual Neural Network (CAVN) model
for anomaly detection in public safety systems. Existing approaches primarily rely on
visual data and employ simple fusion strategies for combining modalities, which leads to
limitations in capturing complex semantic relationships. The proposed model consists
of four main components: a visual feature extraction module based on SlowFast archi-
tecture, an audio feature extraction module based on Audio Spectrogram Transformer
(AST), a fusion module based on bidirectional cross-attention mechanism, and a temporal
context aggregation module based on Transformer encoder. The main scientific novelty
of the model lies in the adaptive modality balancing mechanism, which dynamically
adjusts the relative importance of modalities under different conditions (dark/bright,
noisy/quiet). Experimental results demonstrate that the proposed CAVN model out-
performs existing methods by in overall accuracy and by in dark conditions. Ablation
studies confirmed the contribution of each module to the overall performance.
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1 Introduction

The paradigm of joint processing of acoustic and visual signals has experienced rapid
development in the fields of artificial intelligence and deep learning over the past five years.
Baltrusaitis et al. [1] classified the main challenges of multimodal machine learning in their
comprehensive review as representation, alignment, fusion, co-learning, and translation.
This taxonomy serves as a methodological foundation for subsequent research and has
established the main directions in designing multimodal systems.

In video data processing, accounting for the temporal dimension is of crucial impor-
tance. Feichtenhofer et al. [2] proposed SlowFast networks, an architecture consisting
of two parallel pathways: the slow pathway captures semantic information at low frame
rates, while the fast pathway captures dynamic changes at high frame rates.

This dual-pathway architecture demonstrated state-of-the-art results in video under-
standing tasks and has been widely used as a baseline model for numerous subsequent
studies. Arnab et al. [3] proposed Video Vision Transformer (ViViT), which successfully
applied transformer architecture to the video domain and opened new possibilities for
learning spatio-temporal features.



Model and algorithms for classifying anomalous phenomena . .. 89

Significant achievements have also been made in analyzing audio signals using deep
learning methods. Gong et al. [4] proposed Audio Spectrogram Transformer (AST), which
processes spectrograms directly as sequences of patches and outperforms traditional CNN-
based methods. Subsequently, the same research group [5] presented the SSAST model,
which applied self-supervised pre-training to the audio domain.

This approach enables achieving high performance even with limited labeled data.
Baevski et al. [6] proposed the wav2vec 2.0 model, which demonstrated the effectiveness
of self-supervised learning in speech processing and established new standards in audio
representation learning.

Strategies for fusing multimodal representations are developing as an important re-
search direction. Nagrani et al. [7] proposed Multimodal Bottleneck Transformer (MBT),
which improved computational efficiency by 50% by constraining attention flow while
maintaining classification accuracy. This architecture allows early layers to learn uni-
modal features by restricting cross-modal interactions to later layers. Huang et al. [§|
proposed MAViL (Masked Audio-Video Learners), which combines generative and con-
trastive learning objectives. Girdhar et al. [9] presented ImageBind model, which achieved
alignment of six different modalities (text, image, audio, depth, thermal, and IMU) in a
unified embedding space and demonstrated the phenomenon of "emergent alignment"—
meaning that cross-modal alignment emerges without direct training between modalities.

Attention mechanisms have formed a new paradigm in multimodal learning. Lu et
al. [10] proposed ViILBERT model, which jointly learns visual and linguistic modalities
through cross-attention. The cross-attention mechanism has been proven particularly
effective in learning semantic relationships between different modalities. Li et al. [11] pro-
posed ALBEF (Align Before Fuse) model, which applies the strategy of aligning modal-
ities before fusion and achieves high results in visual-linguistic tasks. Radford et al. [12]
presented CLIP model, which achieved revolutionary results in aligning image and text
representations through contrastive learning and became the foundation for many subse-
quent multimodal systems.

The application of deep learning algorithms in video anomaly detection is expanding
at a rapid pace. Duong et al. [13] presented a comprehensive review of anomaly detec-
tion in video surveillance systems, comparing reconstruction-based, prediction-based, and
classification-based methods. Nayak et al. [14] conducted a complete analysis of deep
learning methods for video anomaly detection and reviewed existing datasets, evaluation
metrics, and open problems in detail. Rezaee et al. [15] classified tracking, handcrafted
feature-based classification, deep learning-based classification, and hybrid approaches in
a review dedicated to distributed video surveillance systems for real-time crowd anomaly
detection.

Recent research on anomaly detection in crowd scenes demonstrates the superiority
of transformer architectures. Georgescu et al. [16] proposed a self-supervised predictive
convolutional attention block for detecting anomalous events. Wang et al. [17] developed
a memory-augmented appearance-motion network, which improves anomaly detection ac-
curacy by storing normal patterns in a memory bank. Liu et al. [18] proposed a method
based on hybrid attention and motion constraints for video anomaly detection. Papout-
sakis et al. [19] presented a state-of-the-art review on crowd anomaly detection, analyzing
works published between 2020-2022 and noting the trend toward transformer architec-
tures.

Audio-visual multimodal learning opens new possibilities in video analysis. Gao et
al. [20] proposed an audio-visual representation learning (AVRL) system, which combined
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3D ResNet and VGGish models for detecting anomalous events in crowd scenes. Their
experiments showed that adding audio signals significantly improves anomaly detection
accuracy, especially in dark conditions. Wu et al. [21| developed a weakly supervised
audio-visual violence detection system that is trained with video-level labels and has the
capability to make frame-level predictions. Leporowski et al. [22] presented MAVAD, the
first audio-visual dataset for anomaly detection in traffic flow, and proposed the AVACA
(Audio-Visual Anomaly Correspondence Attention) method.

Synthetic datasets play an important role in anomaly detection research. Lin et al. [23]
presented the SHADE synthetic dataset created in the GTAS video game, which includes
fully annotated audio-visual surveillance videos. The advantages of synthetic data include
the absence of privacy concerns, complete annotation, and the ability to simulate various
conditions. Bamaqa et al. [24] created the SIMCD synthetic crowd dataset, designed for
anomaly detection and prediction.

Comparative studies on multimodal fusion strategies reveal the advantages and disad-
vantages of different approaches. Brousmiche et al. [25] proposed a multimodal attention
network for audio-visual event recognition, comparing different fusion strategies (early,
late, and intermediate). Shaikh et al. [26] developed MAiVAR (Multimodal Audio-Image
and Video Action Recognizer) system, which improves audio-visual interaction through a
high-level weight assignment algorithm. Middya et al. [27] proposed a system for emotion
recognition from audio-visual modalities through model-level fusion.

The above analysis shows that the majority of existing research uses simple fusion
strategies (concatenation, addition) and does not fully capture complex interactions be-
tween modalities. Issues of dynamically connecting audio and visual modalities through
cross-attention mechanism, modeling temporal context using transformer architecture,
and adaptive adaptation to different environmental conditions (day/night, noisy/quiet)
have not been sufficiently studied. This research is aimed at filling precisely these gaps.

2 Problem Formulation

As shown in the literature review, existing audio-visual anomaly detection systems [20]
use simple fusion strategies and do not fully capture complex semantic relationships be-
tween modalities. Additionally, the attention bottleneck concept demonstrated by Na-
grani et al. [7] and the emergent alignment phenomenon presented in ImageBind model
by Girdhar et al. [9] show that dynamic connection of modalities leads to higher per-
formance. Based on these observations, we propose the Context-adaptive Audio-Visual
Neural Network (CAVN) model.

The proposed CAVN model consists of four main components: visual feature extrac-
tion module (VFM), audio feature extraction module (AFM), cross-attention-based fusion
module (CAFM), and temporal context aggregation module (TCAM). The overall archi-
tecture of the model is presented in Fig. 1.

The operating principle of the model is as follows: a video sequence consisting of T’
frames and corresponding audio segment are received as input. Formally, we denote the
input data as follows:

V ={v,v,..., 01}, v, €W
where V' is the video sequence, v; is the frame at time moment ¢, H is the frame height,
W is the frame width, C is the number of channels, T" is the number of frames. The
corresponding audio segment is denoted as:

A=A{ay,a9,...,ar}, a €,
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where A is the audio signal, a; is the [ — th sample value, L is the number of samples.
The audio signal is sampled at frequency f;, therefore L = f;- T/ f,, where f, is the video
frame rate. The model output returns a probability distribution over event categories:

K

) Y = 17
k=1

~ ~ ~ ~ 1T
y=10,% .-, Uk

where 3 is the predicted probability vector, g is the probability of belonging to the k-th
category, K is the number of categories.

Clasgifigr

Figure 1 Overall architecture of the CAVN model.

In Fig. 1 on the left side are input data (video frames and audio signal), in the middle
are the VFM and AFM modules operating in parallel, followed by the CAFM and TCAM
modules, and on the right side is the classification layer.

As noted in the literature review, the SlowFast architecture proposed by Feichten-
hofer et al. [2] demonstrated state-of-the-art results in video understanding tasks. This
architecture consists of two parallel pathways that capture different temporal scales. The
ViViT model proposed by Arnab et al. [3| also applied transformer architecture to the
video domain; however, considering computational efficiency and real-time requirements,
we chose the SlowFast configuration. The architecture of the visual feature extraction
module is presented in Figure 2.

SLOW PATHWAY

Figure 2 Visual Feature Extraction Module (VFM) architecture

The input video sequence is fed to two parallel pathways (Slow and Fast). Information
is exchanged between pathways through lateral connections. Global average pooling is
applied at the output. The Slow Pathway operates at low frame rate and captures high-
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level semantic information. Selection from the input frame sequence is performed with
step a:

Vitow = {V1, Vita, V1420, - - -}

where Vi, is the set of frames selected for the slow pathway, « is the selection step,
Tsow = [T/a] is the number of selected frames, [-] is the floor function. The slow
pathway encoder is based on the ResNet architecture proposed by He et al. [28], with 2D
convolutions replaced by 3D convolutions:

Fslow = gslow (Vtslow) )

where &0, is the slow pathway encoder function, Fl, € ¢*Ts*HsxWs ig the output

feature map, C is the number of channels, T,, H,, W, are the spatial dimensions. The
Fast Pathway operates at high frame rate and captures rapid dynamic changes. All input
frames are fully utilized:

Vfast =V = {U17U2>"'7UT}a

The fast pathway encoder has fewer channels, ensuring computational efficiency:

Ffast = gfast (Vfast) )

where E;qs is the fast pathway encoder function, Fyue € ¢*Tr*HrxWr ig the output
feature map, Cy = C;/f is the number of channels, / is the channel reduction coefficient.
Lateral connections are applied for information exchange between the two pathways:

70

lateral

= COHV3D (F}?St; 0}2&@1"&1) ?

(4)

ateral

i)

where F) st

is the lateral feature at ¢ — th layer, F JE is the fast pathway output at ¢

— th layer, 9521”@ is the convolution parameters. The outputs of the two pathways are

combined and global average pooling (GAP) is applied:

Fconcat = [Fslow; Eateral] @7
where & is the concatenation operation along the channel axis.
F, = GAP (Fconcat) € DU~

where F, is the final visual feature vector, D, is the vector dimension. As noted in the
literature review, Audio Spectrogram Transformer (AST) proposed by Gong et al. [4, 5]
outperforms traditional CNN-based methods. While the VGGish model proposed by
Hershey et al. [29] is widely used in audio classification, AST leverages the advantages of
transformer architecture. We use AST configuration in the AFM module. The module
architecture is presented in Figure 3.
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Figure 3 Audio Feature Extraction Module (AFM) architecture

The audio signal is converted to time-frequency domain through STF'T, Mel filter bank
is applied, logarithm is taken, and the resulting spectrogram is divided into patches and
fed to AST. For converting the audio signal to spectrogram, resampling is first performed
and Short-Time Fourier Transform (STFT) is applied:

fot,I
X (m, k) = Z a(m-h+n)-wn)-e 2N,
n=0
where X (m, k) is the STFT coefficient, a (n) is the audio signal samples, w (n) is the

window function, Ny, is the FFT size, h is the hop length, j is the imaginary unit. The
window function is defined as:

2
w (n) = 0.5 — 0.5cos (N 7r7_1 1> :

where N, is the window length. As noted in the literature review, the Mel scale proposed
by Stevens et al. [13] accounts for the nonlinear sensitivity of the human auditory system
to frequency. Mel filter bank is applied to the STFT result:

K-1
M (m, f) = |X (m,k)[*- Hy (k),
k=0
where M (m, f) is the f-th Mel filter output at frame , | X (m, k) |? is the power spectrum,
Hy (k) is the frequency response characteristic of the f-th Mel filter, K is the number of
frequency bins. A small value is added for numerical stability and logarithm is taken:

S (m, f) =log (M (m, f)+),

where S is the Log Mel-Spectrogram, is a small value for numerical stability. Final
spectrogram dimension: S € ¥m*Ta where N,, is the number of Mel filters, T, is the
number of temporal frames.

As noted in the literature review, Vision Transformer (ViT) proposed by Dosovitskiy
et al. [30] achieved high results in image classification. AST is a version of this architecture
adapted to the audio domain. The spectrogram is divided into patches of size p x p:

x; =Sriri+pcci+pl,
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where x; is the i-th patch, p x p is the patch size, N, is the total number of patches. Each
patch is converted to vector form and multiplied by projection matrix:

z; = flatten (x;) - E,

where flatten (-) converts 2D patch to 1D vector, E € P*xDa 5 the learnable projection
matrix, D, is the embedding dimension. A special CLS token is added for classification:

Z0 = [Xcls;zl; 725 .- ;ZNP] + Epos-;

where x. is the learnable CLS token, E,,s is the learnable positional encoding. L,
transformer layers are applied sequentially and the final audio feature is obtained from
the CLS token output of the last layer:

F, = AST (Zo) [0] € P=.

As noted in the literature review, the VILBERT model proposed by Lu et al. [10] and
the ALBEF model developed by Li et al. [11] demonstrated the effectiveness of cross-
attention mechanism in multimodal learning. The CLIP model presented by Radford
et al. [12] also showed revolutionary results in aligning modalities through contrastive
learning. We apply bidirectional cross-attention mechanism in the CAFM module. The
module architecture is presented in Figure 4.
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Figure 4 Cross-Attention-based Fusion Module (CAFM) architecture.

Visual and audio features are first projected to a common dimension, then bidirectional
cross-attention is applied, and the final feature is generated through an adaptive balancing
mechanism. Visual and audio features have different dimensions, therefore it is necessary
to project them to a common space:

F, = LayerNorm (F, - W, +b,),
where F, is the projected visual feature, W, € P»*P is the weight matrix, b, is the bias
vector, D is the common dimension, LayerNorm is layer normalization [31]. Similarly, the

audio feature is also projected:
F, = LayerNorm (Fo-Wa+by),

where F), is the projected audio feature. The attention mechanism proposed by Vaswani
et al. [31] operates based on query (Q), key (K), and value (V) vectors. In cross-attention,
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the feature of one modality is used as query, while the other modality serves as key and
value. Visual-to-audio attention is computed as follows:

Qv—m - Fv ' Wqé_ma Kv—>a = Fa : quj(—m’ Vv—)a - Fa : WT\}/_Ma

where Wo, Wy, Wy € P *dr are learnable projection matrices, d = D/h is the dimension
per head, h is the number of attention heads. Attention weights and output:

v GKII; a
Attn,_., = softmax (%) Vossas

where /d}. is the scaling coefficient. Audio-to-visual attention is computed similarly:

Qa—w = Fa . WaQ_wy Ka—w = Fv : W?(_w, Va—>v = Fv . W(‘I/_w,

0o KL
Attn,_,, = softmax (%) Vit

Multi-Head Attention is applied to enhance representation capability:
MHA (-) = Concat (heady, ..., head;) - Wo,

where head; is the ¢ — th attention head, Wy is the output projection matrix.

As noted in the literature review, Gao et al. [20] demonstrated the importance of audio
modality in dark conditions. Wu et al. [21] also investigated the interaction of modalities
in audio-visual violence detection. The relative importance of modalities differs under
different conditions, therefore we introduce an adaptive weight mechanism. The context
vector is generated:

o~ [fh (R )],

where || is the vector concatenation operation, ® is the Hadamard product, c is the
context vector. The weight is computed through sigmoid function:

a,=0(Wy-c+b,),
where «, is the visual modality weight, o is the sigmoid function. Audio modality weight:
a, =1 — .

The cross-attention results are balanced with adaptive weights and residual connec-
tions are added:

Ffused = Qy - (Fv + Attnv%a) + Qg - (Fa + Attna%v) )

where F 54 is the fused feature vector. Modeling long-term temporal dependencies in
video sequences is of crucial importance. As noted in the literature review, the Trans-
former architecture proposed by Vaswani et al. [31] has shown success in various domains.
Wang et al. [17] demonstrated the effectiveness of modeling temporal patterns through
memory-augmented networks. We use Transformer encoder in the TCAM module. The
module architecture is presented in Figure 5.
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Figure 5 Temporal Context Aggregation Module (TCAM) architecture

Positional encoding is added to the fused features, L Transformer encoder layers are
applied sequentially, each layer consisting of MSA and FFN blocks. The video is divided
into T" segments and F .4 is computed for each segment:

n p@ . D
XO = |:Ffused’ Fg‘usech Tt F;used] ’

where Xj is the input sequence. Sinusoidal positional encoding [31] is applied:

: : pos
PE (pos,2i) = sin [ —22°__ .
(pos, 2i) = sin (10000%@)

: pos
PE (pos,2i +1) = cos | — 222 )
(pos,2i + 1) = cos (100002Z/D)

where PFE is the positional encoding matrix, pos is the position index, ¢ is the dimension
index, 10000 is the scaling parameter. Positional encoding is added to the input sequence:

Xy = Xo + PE.

Each Transformer encoder layer consists of two main blocks: Multi-Head Self-
Attention (MSA) and Feed-Forward Network (FFN). The [-th layer operates as follows:

X; = MSA (LN (X;_1)) + X1,

where LN is Layer Normalization:

X —
LN(x) =70 + 0,
() =70 ==+F

where p is the mean value, o is the variance, v, 3 are learnable parameters. Feed-Forward
Network block:
X = FPN (LN (X)) + X,

The Feed-Forward Network consists of two linear layers and activation:
FFN (X) = GELU (XWl + bl) W2 + bQ,

where W1, Wy are weight matrices, GELU is the activation function. The GELU activa-

tion function [32]:
GELU (z) =z - ® (x

~—

)
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where ® is the cumulative distribution function of the standard normal distribution. L
Transformer encoder layers are applied sequentially:

X, = TransformerEncodery, ( .. (TransformerEncoderl (Xg))) )

A single vector is obtained through global average pooling:

1 T
Ftemporal = T Z Xg)
t=1

For final prediction, fully connected layers are applied:
h = ReLU (W1 Fiemporal +b1) ,
where is the hidden layer output, ReLU is the activation function.
g = softmax (Wsh + by)
where y is the predicted probability distribution. Softmax function:
e*r
Z]K:l e
As noted in the literature review, class imbalance is widespread in anomaly detection
datasets [13, 14]. Focal Loss proposed by Lin et al. [33] helps address this problem:

softmax(z), =

N
1 - -
Lfocat = =7 D w1 = i) log (1) .
=1

where NV is the mini-batch size, y; is the ground truth category label, p; is the predicted
probability, w,, is the category balancing weight, ~ is the focusing parameter. Regular-
ization is added:
L= ‘Cfocal + )\293,
)
where © is the set of model parameters, A is the regularization coefficient.

The main advantages of the proposed CAVN model are as follows. First, the cross-
attention mechanism enables learning dynamic semantic relationships between modalities.
Second, adaptive balancing automatically adjusts the relative importance of modalities
under different conditions. Third, the temporal context aggregation module effectively
models long-term dependencies. Fourth, the combination of SlowFast and AST extracts
high-quality features from visual and audio data. Model parameters and computational
complexity are presented in Figure 6.
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Figure 6 CAVN model parameters and computational complexity
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(a) Number of parameters and FLOPs for each module. (b) Inference time comparison
for different configurations. (c) Effect of model size on accuracy. Experimental results are
presented in Figure 7. The proposed CAVN model demonstrated superiority over existing
methods across all metrics.

[} Aecurasy Comparison of Diflerent Mathads ) BOE Curves an i AL fe) Conbuiion Matrix

Lz

Figure 7 Experimental results
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(a) Accuracy metrics of different methods. (b) ROC curves and AUC values com-
parison. (c) Confusion matrix. Ablation study results are presented in Figure 8. The
contribution of each module to the overall performance was analyzed.
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Figure 8 Ablation study results

(a) Results by different module configurations. (b) Effect of adaptive balancing mech-
anism. (c) Effect of number of Transformer layers on accuracy. Model performance under
different conditions is presented in Figure 9. The increased importance of audio modality
was observed in dark and noisy environments.

3 Conclusion

In this research, a Context-adaptive Audio-Visual Neural Network (CAVN) model was
developed and experimentally evaluated for anomaly detection in public safety systems.
The main results of the research are as follows.

First, the proposed model introduced a bidirectional cross-attention mechanism for
effectively combining audio and visual modalities. This approach enables dynamically
learning complex semantic relationships between modalities, which demonstrates signifi-
cant superiority over simple fusion strategies (concatenation, addition).

Second, the adaptive modality balancing mechanism has the capability to automati-
cally adjust the relative importance of modalities under different conditions. Experimental
results showed that in dark conditions, the model assigns more weight to the audio modal-



Model and algorithms for classifying anomalous phenomena . .. 99

ity (g > 0.6), while in noisy environments, the visual modality dominates (o, > 0.7).
This property ensures the robustness of the model in real-world conditions. Third, the
combination of SlowFast architecture and Audio Spectrogram Transformer enabled ex-
tracting high-quality features from visual and audio data. The dual-pathway structure of
SlowFast architecture captures both fast movements and semantic context. AST outper-
formed traditional CNN-based audio encoders.

Fourth, the temporal context aggregation module effectively modeled long-term de-
pendencies in video sequences. The Transformer encoder architecture enables learning
relationships between different time moments through self-attention mechanism. FEx-
perimental results confirmed the superiority of the proposed CAVN model over existing
methods across all metrics. Overall accuracy reached , which is higher than the baseline
method. Notably, in dark conditions, the model achieved accuracy, representing an im-
provement. Ablation studies proved that each module makes a significant contribution to
overall performance.

The limitations and future directions of the research are as follows. First, the model
currently works with only two modalities (audio and visual); in the future, it is possi-
ble to add text, temperature sensors, and other modalities. Second, model optimization
is needed to further improve real-time requirements. Third, creating and testing a spe-
cialized dataset adapted to Uzbekistan conditions is planned. In conclusion, the pro-
posed CAVN model makes an important scientific contribution to the field of audio-visual
anomaly detection and represents a promising approach for practical application in public
safety systems.
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MOAEJIb 1 AJITOPUTMbBI KJIACCU®UKAILIVIN

AHOMAJILHBIX ABJIEHNN HA OCHOBE CXOJIMMOCTU

AKYCTUKO-BU3VYAJIBHBIX CUT'HAJIOB

! Paswanos H., * Bo6oparumos B.U., 2Bepdues M.H.
*uzbekpy@gmail . com

1Hay‘IHO-I/ICC.HeILOBaTe.HLCKI/If/'I NHCTUTYT PA3BUTUA HI/I(i)pOBbIX TEXHOJIOTUIA 1 HUCKYCCTBEHHOI'O

WHTEJLIEKTA,
100125, Ysbekucras, 1. Tamkent, Mupszo-Yiayréekckuii p-oH, M-B By3-2, 1. 17A;
2Harmonanbnas ['sapmus Pecry6iuku Y3bexucraH,
100017, V3bekucran, r. TamkenT, yiu. I11. Pamunosa, qom 23.

B mamnoit crarbe mpeiaraercs KOHTEKCTHO-aJAITUBHAS ayIu0-BU3yaIbHas HeHpo-
cereBast Mozenb (KMAVN) st obHapyzkeHusi aHomajnii B cucreMax OOMIECTBEHHOM
6ezomacHocTr. CyIIEeCTBYIOIUE MOAX0IbI B OCHOBHOM OIUPAIOTCS Ha BU3YaJbHBIC JTAH-
HBIE W WCIIOJIB3YIOT IPOCThIE CTPATErHU OObEIUHEHHUSI MOJAJBHOCTEH, UTO MPUBOIUAT K
OTpPaHUIEHUSM B OXBaTe CJIOXKHBIX CeMaHTUIeCKmX cBsi3eil. [Ipenmaraemast momesb co-
CTOUT M3 YETBIPEX OCHOBHBIX KOMIIOHEHTOB: MOJLYJ/Isl M3BJICYEHUsI BU3YAJIbHBIX MPU3HA-
KOB Ha OCHOBE apXUTeKTypbl SlowFast, Momysst nsBiedenns: ayuo IpU3HAKOB Ha OCHOBE
Audio Spectrogram Transformer (AST), momynsi oObeHEHNsI HA OCHOBE JIBYHAIIPAB-
JICHHOT'O TIEPEKPECTHOTO BHUMAHUS U MOJYJIsl arperaiui BPEMEHHOI'O0 KOHTEKCTa Ha OC-
Hose Transformer encoder. OcHOBHOE HaydHOE HOBIIECTBO MOJIEU 3aKJIIOUAETCST B Me-
XaHU3Me aJalITUBHON OAJaHCUPOBKU MOIAJbHOCTEH, KOTOPBIl AUHAMUYECKH PEryJIHpYy-
eT OTHOCHUTEJIbHYIO BaXKHOCTH MOJIAJILHOCTEN B PA3JIMIHBIX YCIOBHUAX (TEMHOE/CBETIIOE,
[IyMHOE /TUX0€). DKCIEePUMEHTATbHBIE Pe3yJIbTaThl MOKA3aJM, YTO IpeJjiaraeMas MoO-
nens KMAVN npesocxoauT cymecTBytomue MeTonsl Ha +4.4% 1o obmieit TouHOCTH H
Ha +32.1% B ycioBusax Hm3KOIT ocBeméHHOCTH. VccaemoBannust abJIsIUNd MOATBEDIUIH
BKJI&JT, KaXKJI0TO MOJIYJ/IsI B OOILYI0 3(pHeKTUBHOCTD.
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KuaroueBbie cioBa: JuHAMHUYECKOE B3BEIIMBAHUE MOJIAJIBLHOCTEH, IMPOCTPAHCTBEHHO-
BPeMEeHHOe IIpeJICTaB/IeHNEe, BBIpDABHUBaHNE Ha OCHOBE BHUMAaHUsI, YCTOHUYNBOE PacIIO3Ha-
BaHWe aHOMAJINM, BUICOHADJIIOEHNE B PEAJIbHBIX YCJIOBUSIX.
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MBI KJIaCCU(PUKAIINI aHOMAJIbHBIX SIBJIEHUI HA OCHOBE CXOAUMMOCTH aKyCTHKO-BU3YAJIbHBIX

curaasos // IIpobsieMbl BbIMUCIMTENBbHOI U IpUKJIaIHON MaTemaruku. — 2025. — Ne6(70).
- C.88-102.
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