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1 Introduction
Initial-boundary value problems for parabolic partial differential equations play a key role
in the mathematical modeling of diffusion processes, heat transfer, and many other time-
dependent phenomena. In typical parabolic problems, the direction of time is consistent
and forward, ensuring that the problem is well-posed in the Hadamard sense. However,
initial-boundary value problems for equations that change direction with respect to time
become significantly more difficult. Such problems are usually ill-posed, that is, the
solution may not exist, may not be unique, or may not depend continuously on the initial
data.

This study is aimed at regularizing the initial-boundary value problem for an inhomo-
geneous parabolic equation that changes direction with respect to time.

This work considers the theoretical formulation of the regularization of the problem.
That is, the conditional stability estimate, uniqueness, and conditional stability of the
solution are studied. Based on these, a regularized solution is constructed. The research
is very important not only for the theoretical development of partial differential equations
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but also for practical problems in inverse heat transfer, diffusion processes, and other
similar time-reversible or mixed-direction processes.

Let the function 𝑢(𝑥, 𝑡) satisfy the equation

𝑢𝑡 (𝑥, 𝑡) + 𝑘 (𝑥)𝑢𝑥𝑥 (𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) , (1)

in the region Ω = {(𝑥, 𝑡) : −𝑙 < 𝑥 < 𝑙, 𝑥 ̸= 0, 0 < 𝑡 < 𝑇}, where 𝑘(𝑥) =

{︃
𝑎, if 𝑥 > 0,

−𝑏, if 𝑥 < 0,

𝑎, 𝑏 are given constants and 𝑓 (𝑥, 𝑡) is a sufficiently smooth given function.
Problem statement. Find a function 𝑢(𝑥, 𝑡) satisfying equation (1) in the region Ω

and the initial
𝑢 (𝑥, 0) = 𝜙 (𝑥) , −𝑙 ⩽ 𝑥 ⩽ 𝑙, (2)

boundary
𝑢 (−𝑙, 𝑡) = 𝑢 (𝑙, 𝑡) = 0, 0 ⩽ 𝑡 ⩽ 𝑇, (3)

and gluing

𝑢 (−0, 𝑡) = 𝑢 (+0, 𝑡) , 𝑏𝑢𝑥 (−0, 𝑡) = −𝑎𝑢𝑥 (+0, 𝑡) , 0 ⩽ 𝑡 ⩽ 𝑇, (4)

conditions, where 𝜙 (𝑥) is a sufficiently smooth given function.
Problems involving parabolic equations with changing type were first investigated in

the works of M. Gevrey [1]. Later, equations of this type were also examined in the
scientific works of M.S. Baouendi and P. Grisvard [2], C.D. Pagani and G. Talenti [3],
and L. Cattabriga [4]. The research of S. A. Tersenov [5] considered model parabolic
equations with changing direction, along with several other types of model equations. For
inhomogeneous parabolic type equations with changing type, V.K. Romanko [6], V.N.
Vragov and A.G. Podgaev [7], S.G. Pyatkov [8] and A.A. Kerefov [9] established funda-
mental theorems on existence, uniqueness, and stability for a wide class of such equations
using operator theory and functional analysis. The conditional well-posedness of initial-
boundary value problems and the development of regularized approximate solutions for
such types of equations have been addressed in the works of K.S. Fayazov, I.O. Khajiev
and Ya.K. Khudaybergenov [10]- [14].

2 Eigenvalue problem
We search the solution of the problem (1) -(4) with the Fourier method, also known as
separation of variables. As a result, we obtain the following spectral problem. Determine
the value of the parameter 𝜆 such that problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑘(𝑥)𝑋 ′′ − 𝜆𝑋 = 0,

𝑋(−𝑙) = 𝑋(𝑙) = 0,

𝑋(−0) = 𝑋(+0),

𝑏𝑋 ′(−0) = −𝑎𝑋 ′(+0).

(5)

admits a nontrivial solution.
The positive eigenvalues 𝜆+𝑘 and the negative eigenvalues 𝜆−𝑘 of spectral problem

(5) are the solutions of the transcendental equations
√
𝑎𝑡𝑔

√︁
𝜆+
𝑘

𝑏
𝑙 −
√
𝑏𝑡ℎ

√︁
𝜆+
𝑘

𝑎
𝑙 = 0 and

√
𝑏𝑡𝑔

√︁
−𝜆−

𝑘

𝑎
𝑙−
√
𝑎𝑡ℎ

√︁
−𝜆−

𝑘

𝑏
𝑙 = 0. The problem (5) has eigenfunctions for every eigenvalue
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𝜆+𝑘 , 𝜆−𝑘 and they are

𝑋+
𝑘 (𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√︀
𝑃 (𝜆+𝑘 )

·
sin

(︃√︂
𝜆+𝑘
𝑏
(𝑙 + 𝑥)

)︃

cos

(︃√︂
𝜆+𝑘
𝑏
𝑙

)︃ , −𝑙 ⩽ 𝑥 < 0,

√
𝑏√︀

𝑎𝑃 (𝜆+𝑘 )
·
sinh

(︃√︂
𝜆+𝑘
𝑎
(𝑙 − 𝑥)

)︃

cosh

(︃√︂
𝜆+𝑘
𝑎
𝑙

)︃ , 0 < 𝑥 ⩽ 𝑙,

𝑋−
𝑘 (𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
√
𝑎√︀

𝑏𝑃 (𝜆−𝑘 )
·
sinh

(︃√︂
−𝜆−𝑘
𝑏

(𝑙 + 𝑥)

)︃

cosh

(︃√︂
−𝜆−𝑘
𝑏

𝑙

)︃ , −ℓ ⩽ 𝑥 < 0,

− 1√︀
𝑃 (𝜆−𝑘 )

·
sin

(︃√︂
−𝜆−𝑘
𝑎

(𝑙 − 𝑥)

)︃

cos

(︃√︂
−𝜆−𝑘
𝑎

𝑙

)︃ , 0 < 𝑥 ⩽ ℓ,

respectively, where 𝑃
(︀
𝜆+𝑘
)︀
= ℓ

2

(︂
1− 𝑏

𝑎
+ tan2

(︂√︁
𝜆+
𝑘

𝑏
ℓ

)︂
+ 𝑏

𝑎
tanh2

(︂√︁
𝜆+
𝑘

𝑎
ℓ

)︂)︂
, 𝑃
(︀
𝜆−𝑘
)︀
=

= ℓ
2

(︂
1− 𝑎

𝑏
+ tan2

(︂√︁
−𝜆−

𝑘

𝑎
ℓ

)︂
+ 𝑎

𝑏
tanh2

(︂√︁
−𝜆−

𝑘

𝑏
ℓ

)︂)︂
. The eigenvalues 𝜆+𝑘 , −𝜆−𝑘 consti-

tute increasing sequences, which can be seen from the following graphs and tables.

Figure 1 𝑎 = 1, 𝑏 = 2, 𝑙 = 3
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Table 1 𝑎 = 1, 𝑏 = 2, 𝑙 = 3
𝜆−𝑘 -1.5645 -5.2878 -11.2 -19.3068 -29.606 -420.686
𝑦 0.9901 0.9998 1 1 1 1

Table 2 𝑎 = 1, 𝑏 = 2, 𝑙 = 3
𝜆+𝑘 0.1695 3.7299 11.6435 23.9436 40.6302 61.7033
𝑦 1.1937 1.4141 1.4142 1.4142 1.4142 1.4142

Figure 2 𝑎 = 4, 𝑏 = 1, 𝑙 = 5

Table 3 𝑎 = 4, 𝑏 = 1, 𝑙 = 5
𝜆−𝑘 -0.1925 -2.8882 -8.7387 -17.7474 -29.9144 -45.2396
𝑦 1.9509 2 2 2 2 2

Table 4 𝑎 = 4, 𝑏 = 1, 𝑙 = 5
𝜆+𝑘 0.5136 1.8202 6.7912 10.4608 14.9199 20.1687
𝑦 0.9459 0.9976 1 1 1 1

In Tables 1–4 present the values of the eigenvalues 𝜆−𝑘 and 𝜆+𝑘 obtained by approxi-
mately solving the transcendental equations using Newton’s method. Graphical solution
of a transcendental equation involves plotting both sides of the equation as separate
functions and finding the points where their graphs intersect. The intersection points in
Figures 1 and Figure 2 represent the solutions to the equation.

Let the dot product in space 𝐿2 (−𝑙, 𝑙) be (𝑢, 𝑣) =
𝑙∫︀

−𝑙

𝑢𝑣𝑑𝑥, and the norm be ‖𝑢‖2 =

= (𝑢, 𝑢). According to the Hilbert–Schmidt theorem, the system of eigenfunctions in
space 𝐿2 (−𝑙, 𝑙) is complete and orthogonal. That is, eigenfunctions have normalization
properties. (︀

𝑋+
𝑘 , 𝑋

−
𝑗

)︀
= 0,

(︀
𝑋±

𝑘 , 𝑋±
𝑗

)︀
= 𝛿𝑘𝑗, ∀𝑘, 𝑗, 𝑛 ∈ 𝑁,
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where 𝛿𝑘𝑗 is the Kronecker delta.
Lemma 2.1. Suppose that the function 𝑢(𝑥, 𝑡) satisfies the equation

𝑢𝑡 (𝑥, 𝑡) + 𝑘 (𝑥)𝑢𝑥𝑥 (𝑥, 𝑡) = 0

and the conditions 𝑢 (−𝑙, 𝑡) = 𝑢 (𝑙, 𝑡) = 0, 𝑢 (−0, 𝑡) = 𝑢 (+0, 𝑡), 𝑏𝑢𝑥 (−0, 𝑡) = −𝑎𝑢𝑥 (+0, 𝑡),
then the estimate

‖𝑢 (𝑥, 𝑡)‖ ⩽
√
2‖𝑢 (𝑥, 0)‖1−

𝑡
𝑇 ‖𝑢 (𝑥, 𝑇 )‖

𝑡
𝑇 .

is valid.
Proof. According to the properties of the eigenfunctions𝑋+

𝑘 (𝑥),𝑋−
𝑘 (𝑥), (𝑖, 𝑗 = 1, 2, ...)

of the spectral problem (5), the function 𝑢 (𝑥, 𝑡) satisfying the conditions of Lemma 1 and
the solution of equation 𝑢𝑡 (𝑥, 𝑡) + 𝑘 (𝑥)𝑢𝑥𝑥 (𝑥, 𝑡) = 0 can be written in the form

𝑢 (𝑥, 𝑡) =
∞∑︁
𝑖=1

𝑢+𝑘 (𝑡)𝑋+
𝑘 (𝑥) +

∞∑︁
𝑖=1

𝑢−𝑘 (𝑡)𝑋−
𝑘 (𝑥),

where the functions 𝑢+𝑘 (𝑡), 𝑢−𝑘 (𝑡), (𝑖, 𝑗 = 1, 2, ...) are the solutions of problems{︃{︀
𝑢+𝑘 (𝑡)

}︀
𝑡
+ 𝜆+𝑘 𝑢

+
𝑘 (𝑡) = 0,

𝑢+𝑘 (0) = 𝜙+
𝑘 ,

{︃{︀
𝑢−𝑘 (𝑡)

}︀
𝑡
+ 𝜆−𝑘 𝑢

−
𝑘 (𝑡) = 0,

𝑢−𝑘 (0) = 𝜙−
𝑘 .

We know that for each function 𝑢+𝑘 (𝑡), 𝑢−𝑘 (𝑡), (𝑖, 𝑗 = 1, 2, ...), the inequalities

{︀
𝑢+𝑘 (𝑡)

}︀2
⩽
(︁{︀
𝑢+𝑘 (0)

}︀2)︁1− 𝑡
𝑇
(︁{︀
𝑢+𝑘 (𝑇 )

}︀2)︁ 𝑡
𝑇
,{︀

𝑢−𝑘 (𝑡)
}︀2

⩽
(︁{︀
𝑢−𝑘 (0)

}︀2)︁1− 𝑡
𝑇
(︁{︀
𝑢−𝑘 (𝑇 )

}︀2)︁ 𝑡
𝑇
.

hold, respectively [15]. According to the sum of these inequalities and Holder’s inequality,
we get

∞∑︁
𝑖=1

{︀
𝑢+𝑖
}︀2
+

∞∑︁
𝑖=1

{︀
𝑢−𝑖
}︀2

⩽ 2

(︃
∞∑︁
𝑖=1

{︀
𝑢+𝑖 (0)

}︀2
+

∞∑︁
𝑖=1

{︀
𝑢−𝑖 (0)

}︀2)︃1− 𝑡
𝑇

×

×

(︃
∞∑︁
𝑖=1

{︀
𝑢+𝑖 (𝑇 )

}︀2
+

∞∑︁
𝑖=1

{︀
𝑢−𝑖 (𝑇 )

}︀2)︃ 𝑡
𝑇

,

or
‖𝑢 (𝑥, 𝑡)‖ ⩽

√
2(‖𝑢 (𝑥, 0)‖)

1− 𝑡
𝑇
(‖𝑢 (𝑥, 𝑇 )‖)

𝑡
𝑇 .

Lemma 2.2. For the solution 𝑢(𝑥, 𝑡) of problem (1)–(4), the following estimate

‖𝑢 (𝑥, 𝑡)‖ ⩽
√
2(‖𝜙 (𝑥)‖+ 𝛼)(1−

𝑡
𝑇 )(‖𝑢 (𝑥, 𝑇 )‖+ 𝛼)

𝑡
𝑇 + 𝛼.

holds, where 𝛼 =

(︂
𝑇

𝑇∫︀
0

‖𝑓 (𝑥, 𝑡)‖2𝑑𝑡
)︂1/2

.

Proof. The solution of equation (1) can be represented in the form 𝑢 (𝑥, 𝑡) = 𝑢̄ (𝑥, 𝑡)+
+ 𝑢̃ (𝑥, 𝑡), where 𝑢̄ (𝑥, 𝑡) is solution of the equation

𝑢̄𝑡 (𝑥, 𝑡)− 𝑠𝑔𝑛𝑥𝑢̄𝑥𝑥 (𝑥, 𝑡) = 0
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and 𝑢̃ (𝑥, 𝑡) is solution of the equation

𝑢̃𝑡 (𝑥, 𝑡)− 𝑠𝑔𝑛𝑥𝑢̃𝑥𝑥 (𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) ,

where the functions 𝑢̄ (𝑥, 𝑡), 𝑢̃ (𝑥, 𝑡) satisfy the boundary conditions

𝑢̄ (−𝑙, 𝑡) = 𝑢̄ (𝑙, 𝑡) = 0, 𝑢̃ (−𝑙, 𝑡) = 𝑢̃ (𝑙, 𝑡) = 0

and the gluing conditions

𝑢̄ (−0, 𝑡) = 𝑢̄ (+0, 𝑡) , 𝑏𝑢̄ (−0, 𝑡) = −𝑎𝑢̄ (+0, 𝑡) ,

𝑢̃ (−0, 𝑡) = 𝑢̃ (+0, 𝑡) , 𝑏𝑢̃ (−0, 𝑡) = −𝑎𝑢̃ (+0, 𝑡) .

Let the solutions 𝑢̄ (𝑥, 𝑡), 𝑢̃ (𝑥, 𝑡) of the equation (1) exist. Then they can be described in
the forms

𝑢̄ (𝑥, 𝑡) =
∞∑︁
𝑘=1

𝑢̃+𝑘 (𝑡)𝑋+
𝑘 (𝑥) +

∞∑︁
𝑘=1

𝑢̃−𝑘 (𝑡)𝑋−
𝑘 (𝑥),

𝑢̃ (𝑥, 𝑡) =
∞∑︁
𝑘=1

𝑢̃+𝑘 (𝑡)𝑋+
𝑘 (𝑥) +

∞∑︁
𝑘=1

𝑢̃−𝑘 (𝑡)𝑋−
𝑘 (𝑥).

Here, for each 𝑘 = 1, 2, ..., 𝑢̃±𝑘 (𝑡) and 𝑢̄±𝑘 (𝑡) satisfy the following problems, respectively:{︃{︀
𝑢̃+𝑘 (𝑡)

}︀
𝑡
+ 𝜆+𝑘 𝑢̃

+
𝑘 (𝑡) = 𝑓+

𝑘 ,

𝑢̃+𝑘 (0) = 0,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{︀
𝑢̃−𝑘 (𝑡)

}︀
𝑡
+ 𝜆−𝑘 𝑢̃

−
𝑘 (𝑡) = 𝑓−

𝑘 ,

𝑢̃−𝑘 (0) = −
𝑇∫︁

0

𝑒𝜆
−
𝑘 𝜏𝑓−

𝑘 (𝜏) 𝑑𝜏 ,

{︃{︀
𝑢̄+𝑘 (𝑡)

}︀
𝑡
+ 𝜆+𝑘 𝑢̄

+
𝑘 (𝑡) = 0,

𝑢̃+𝑘 (0) = 𝜙−
𝑘 ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{︀
𝑢̄−𝑘 (𝑡)

}︀
𝑡
+ 𝜆−𝑘 𝑢̄

−
𝑘 (𝑡) = 0,

𝑢̃−𝑘 (0) = 𝜙−
𝑘 +

𝑇∫︁
0

𝑒𝜆
−
𝑘 𝜏𝑓−

𝑘 (𝜏) 𝑑𝜏 ,

where 𝜙±
𝑘 =

𝑙∫︀
−𝑙

𝜙 (𝑥)𝑋±
𝑘 (𝑥) 𝑑𝑥, 𝑓±

𝑘 =
𝑙∫︀

−𝑙

𝑓 (𝑥, 𝑡)𝑋±
𝑘 (𝑥)𝑑𝑥. As shown in [10],

𝑢̃+𝑘 (𝑡) =

𝑡∫︁
0

𝑒𝜆
+
𝑘 (𝜏−𝑡)𝑓+

𝑘 (𝜏) 𝑑𝜏 , 𝑢̃−𝑘 (𝑡) = −
𝑇∫︁
𝑡

𝑒𝜆
−
𝑘 (𝜏−𝑡)𝑓−

𝑘 (𝜏) 𝑑𝜏 .

Consequently,

‖𝑢̃ (𝑥, 𝑡)‖2 =
∞∑︁
𝑘=1

⎛⎝ 𝑡∫︁
0

𝑒𝜆
+
𝑘 (𝜏−𝑡)𝑓+

𝑘 (𝜏) 𝑑𝜏

⎞⎠2

+
∞∑︁
𝑘=1

⎛⎝ 𝑇∫︁
𝑡

𝑒𝜆
−
𝑘 (𝜏−𝑡)𝑓−

𝑘 (𝜏) 𝑑𝜏

⎞⎠2

⩽

⩽
∞∑︁
𝑘=1

𝑡

𝑡∫︁
0

{︀
𝑓+
𝑘 (𝜏)

}︀2
𝑑𝜏 +

∞∑︁
𝑘=1

(𝑇 − 𝑡)
𝑇∫︁
𝑡

{︀
𝑓−
𝑘 (𝜏)

}︀2
𝑑𝜏 ⩽ 𝑇

𝑇∫︁
0

‖𝑓 (𝑥, 𝑡)‖2𝑑𝑡. (6)

According to the result of Lemma 1, the estimate

‖𝑢̄(𝑥, 𝑡)‖ ⩽
√
2‖𝑢̄ (𝑥, 0)‖1−

𝑡
𝑇 ‖𝑢̄ (𝑥, 𝑇 )‖

𝑡
𝑇 ,
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holds for the function 𝑢̄ (𝑥, 𝑡), and taking into account the equality 𝑢̄ (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) −
− 𝑢̃ (𝑥, 𝑡), the required inequality

‖𝑢(𝑥, 𝑡)‖ ⩽
√
2(‖𝑢 (𝑥, 0)‖+ 𝛼)(1−

𝑡
𝑇 )(‖𝑢 (𝑥, 𝑇 )‖+ 𝛼)

𝑡
𝑇 + 𝛼, (7)

follows, where 𝛼 =

(︂
𝑇

𝑇∫︀
0

‖𝑓 (𝑥, 𝑡)‖2𝑑𝑡
)︂1/2

.

Thus, we define the set of correctness 𝑀 as follows:

𝑀 = {𝑢(𝑥, 𝑡) : ‖𝑢 (𝑥, 𝑇 )‖ ⩽ 𝑚, 𝑚 <∞} .

3 Uniqueness and conditional stability theorems
Theorem 3.1. Let the solution of the problem (1)–(4) exists in the set 𝑀 , then it is

unique.
Proof. Assume that the problem (1)-(4) has two solutions 𝑢1 (𝑥, 𝑡) and 𝑢2 (𝑥, 𝑡). Let

𝑢 (𝑥, 𝑡) = 𝑢1 (𝑥, 𝑡) − 𝑢2 (𝑥, 𝑡) denote their difference. Then the function 𝑢 (𝑥, 𝑡) satisfies
equation

𝑢𝑡 (𝑥, 𝑡) + 𝑘 (𝑥)𝑢𝑥𝑥 (𝑥, 𝑡) = 0,

along with the conditions 𝑢 (𝑥, 0) = 0, and boundary (3) and gluing conditions (4). It
follows that 𝛼 = 0, and by inequality (7), we get ‖𝑢(𝑥, 𝑡)‖ ⩽ 0 or 𝑢(𝑥, 𝑡) ≡ 0. This implies
𝑢1 (𝑥, 𝑡) ≡ 𝑢2 (𝑥, 𝑡). The uniqueness of the solution has been proven.

Theorem 3.2. Suppose that the solution of the problem (1)–(4) exists, and let
𝑢(𝑥, 𝑡) ∈𝑀 , ‖𝜙(𝑥)− 𝜙𝜀(𝑥)‖ ⩽ 𝜀, ‖𝑓(𝑥, 𝑡)− 𝑓𝜀(𝑥, 𝑡)‖ ⩽ 𝜀. Then the estimate

‖𝑢(𝑥, 𝑡)− 𝑢𝜀(𝑥, 𝑡)‖ ⩽
√
2(𝜀 (𝑇 + 1))(1−

𝑡
𝑇 )(2𝑚+ 𝑇𝜀)

𝑡
𝑇 + 𝑇𝜀,

holds.
Proof. Let 𝑈 (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡)− 𝑢𝜀 (𝑥, 𝑡) be a function that satisfies equation

𝑈𝑡 (𝑥, 𝑡) + 𝑘 (𝑥)𝑈𝑥𝑥 (𝑥, 𝑡) = 𝑓(𝑥, 𝑡)− 𝑓𝜀(𝑥, 𝑡),

in region Ω = {(𝑥, 𝑡) : −𝑙 < 𝑥 < 𝑙, 𝑥 ̸= 0, 0 < 𝑡 < 𝑇} and fulfills the following conditions:
the initial condition

𝑈 (𝑥, 0) = 𝜙 (𝑥)− 𝜙𝜀 (𝑥) , −𝑙 ⩽ 𝑥 ⩽ 𝑙,

the boundary conditions

𝑈 (−𝑙, 𝑡) = 𝑈 (𝑙, 𝑡) = 0, 0 ⩽ 𝑡 ⩽ 𝑇,

and the gluing conditions

𝑈 (−0, 𝑡) = 𝑈 (+0, 𝑡) , 𝑏𝑈𝑥 (−0, 𝑡) = −𝑎𝑈𝑥 (+0, 𝑡) , 0 ⩽ 𝑡 ⩽ 𝑇.

According to the conditions of the theorem we have

‖𝑈 (𝑥, 0)‖ = ‖𝜙 (𝑥)− 𝜙𝜀 (𝑥)‖ ⩽ 𝜀, ‖𝑈 (𝑥, 𝑇 )‖ ⩽ ‖𝑢 (𝑥, 𝑇 )‖+ ‖𝑢𝜀 (𝑥, 𝑇 )‖ ⩽ 2𝑚,

𝛼 =

⎛⎝𝑇 𝑇∫︁
0

‖𝑓 (𝑥, 𝜏)− 𝑓𝜀 (𝑥, 𝜏)‖2𝑑𝜏

⎞⎠1/2

⩽ 𝜀𝑇.
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From estimate (7), we obtain

‖𝑈(𝑥, 𝑡)‖ ⩽
√
2(𝜀(𝑇 + 1))(1−

𝑡
𝑇 )(2𝑚+ 𝜀𝑇 )

𝑡
𝑇 + 𝜀𝑇.

The theorem is proved.

4 Approximate solution
Let us consider constructing the regularized approximate solution of the given problem
(1)–(4). Suppose that the solution of the problem (1)–(4) exists and 𝑢(𝑥, 𝑡) ∈ 𝑀 . Then
the solution can be represented in the form

𝑢 (𝑥, 𝑡) =
∞∑︁
𝑘=1

𝑢+𝑘 (𝑡)𝑋+
𝑘 (𝑥) +

∞∑︁
𝑘=1

𝑢−𝑘 (𝑡)𝑋−
𝑘 (𝑥), (8)

where 𝑢+𝑘 (𝑡) = 𝑒−𝜆+
𝑘 𝑡𝜙+

𝑘 +
𝑡∫︀
0

𝑓+
𝑘 (𝜏) 𝑒𝜆

+
𝑘 (𝜏−𝑡)𝑑𝜏 , 𝑢−𝑘 (𝑡) = 𝑒−𝜆−

𝑘 𝑡𝜙−
𝑘 +

𝑡∫︀
0

𝑓−
𝑘 (𝜏) 𝑒𝜆

−
𝑘 (𝜏−𝑡)𝑑𝜏 .

We denote by

𝑢𝑁(𝑥, 𝑡) =
∞∑︁
𝑘=1

𝑢+𝑘 (𝑡)𝑋+
𝑘 (𝑥) +

𝑁∑︁
𝑘=1

𝑢−𝑘 (𝑡)𝑋−
𝑘 (𝑥), (9)

the regularized solution corresponding to the exact data, and represent the regularized
solution corresponding to the approximate data in the form

𝑢𝑁𝜀 (𝑥, 𝑡) =
∞∑︁
𝑘=1

𝑢+𝜀𝑘 (𝑡)𝑋
+
𝑘 (𝑥) +

𝑁∑︁
𝑘=1

𝑢−𝜀𝑘 (𝑡)𝑋
−
𝑘 (𝑥), (10)

where 𝑁 is the regularization parameter.
The inequality ⃦⃦

𝑢− 𝑢𝑁𝜀
⃦⃦
⩽
⃦⃦
𝑢− 𝑢𝑁

⃦⃦
+
⃦⃦
𝑢𝑁 − 𝑢𝑁𝜀

⃦⃦
, (11)

holds for the norm of the difference between the exact solution (8) and the regularized
approximate solution (10) corresponding to the approximate data.

Now, we analyze the regularized solution of the problem (1)–(4) in two cases: 1)
𝑓 (𝑥, 𝑡) = 0, 2) 𝜙 (𝑥) = 0.

Case 1: In this case, the second norm on the right-hand side of inequality (11) is
estimated as follows:

⃦⃦
𝑢𝑁 − 𝑢𝑁𝜀

⃦⃦2
=

∞∑︁
𝑘=1

𝑒−2𝜆+
𝑘 𝑡
(︀
𝜙+
𝑘 − 𝜙

+
𝑘𝜀

)︀2
+

𝑁∑︁
𝑘=1

𝑒−2𝜆−
𝑘 𝑡
(︀
𝜙−
𝑘 − 𝜙

−
𝑘𝜀

)︀2
⩽

⩽ 𝑒−2𝜆+
1 𝑡

∞∑︁
𝑘=1

(︀
𝜙+
𝑘 − 𝜙

+
𝑘𝜀

)︀2
+ 𝑒−2𝜆−

𝑁 𝑡

∞∑︁
𝑘=1

(︀
𝜙−
𝑘 − 𝜙

−
𝑘𝜀

)︀2
⩽
(︁
𝑒−2𝜆+

1 𝑡 + 𝑒−2𝜆−
𝑁 𝑡
)︁
𝜀2. (12)

The norm
⃦⃦
𝑢− 𝑢𝑁

⃦⃦
is expressed as follows:

⃦⃦
𝑢− 𝑢𝑁

⃦⃦2
=

∞∑︁
𝑘=𝑁+1

𝑒−2𝜆−
𝑘 𝑡
{︀
𝜙−
𝑘

}︀2
. (13)
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Now, under condition ‖𝑢 (𝑥, 𝑇 )‖ ⩽ 𝑚, we determine the greatest value of the expres-
sion on the right side of equality (13) using the method of Lagrange multipliers.

It is known that, from condition ‖𝑢 (𝑥, 𝑇 )‖ ⩽ 𝑚:

∞∑︁
𝑘=1

𝑒−2𝜆−
𝑘 𝑇
{︀
𝜙−
𝑘

}︀2
⩽ 𝑚2. (14)

We construct the Lagrange function 𝐹
(︀
𝜙−
𝑘 , 𝜉
)︀

under condition (14) as follows:

𝐹
(︀
𝜙−
𝑘 , 𝜉
)︀
=

∞∑︁
𝑘=𝑁+1

𝑒−2𝜆−
𝑘 𝑡
{︀
𝜙−
𝑘

}︀2
+ 𝜉

(︃
∞∑︁
𝑘=1

𝑒−2𝜆−
𝑘 𝑇
{︀
𝜙−
𝑘

}︀2 −𝑚2

)︃
,

where 𝜉 is the Lagrange parameter. Now, using the following partial derivatives of the
function:

𝜕𝐹

𝜕𝜙−
𝑘

= 0,
𝜕𝐹

𝜕𝜉
= 0, 𝑘 = 1, 2, ...

and the given constraints, the values of 𝜙−
𝑘 are determined in the following form:

𝜙−
𝑘 =

{︃
𝑚𝑒𝜆

−
𝑁+1𝑇 , 𝑘 = 𝑁 + 1,

0, 𝑘 ̸= 𝑁 + 1.

By placing this result into (13), we obtain⃦⃦
𝑢− 𝑢𝑁

⃦⃦2
⩽ 𝑚2𝑒2𝜆

−
𝑁+1(𝑇−𝑡). (15)

Using the estimates from (12) and (15) in inequality (11), we obtain the overall esti-
mate ⃦⃦

𝑢− 𝑢𝑁𝜀
⃦⃦
⩽ 𝑚𝑒𝜆

−
𝑁+1(𝑇−𝑡) + 𝜀

(︁
𝑒−2𝜆+

1 𝑡 + 𝑒−2𝜆−
𝑁 𝑡
)︁1/2

. (16)

Case 2: In this case, the second norm on the right-hand side of inequality (11) is
estimated as follows:

⃦⃦
𝑢𝑁 − 𝑢𝑁𝜀

⃦⃦2
=

∞∑︁
𝑘=1

⎛⎝ 𝑡∫︁
0

(︀
𝑓+
𝑘 (𝜏)− 𝑓+

𝑘𝜀 (𝜏)
)︀
𝑒𝜆

+
𝑘 (𝜏−𝑡)𝑑𝜏

⎞⎠2

+

+
𝑁∑︁
𝑘=1

⎛⎝ 𝑡∫︁
0

(︀
𝑓−
𝑘 (𝜏)− 𝑓−

𝑘𝜀 (𝜏)
)︀
𝑒𝜆

−
𝑘 (𝜏−𝑡)𝑑𝜏

⎞⎠2

⩽

⩽ 𝑡
∞∑︁
𝑘=1

𝑡∫︁
0

(︀
𝑓+
𝑘 (𝜏)− 𝑓+

𝑘𝜀 (𝜏)
)︀2
𝑑𝜏 +

1

2𝜆−1

(︁
1− 𝑒−2𝜆−

𝑁 𝑡
)︁ 𝑁∑︁

𝑘=1

𝑡∫︁
0

(︀
𝑓−
𝑘 (𝜏)− 𝑓−

𝑘𝜀 (𝜏)
)︀2
𝑑𝜏 ⩽

⩽ 𝜀2
(︂
𝑡+

1

2𝜆−1

(︁
1− 𝑒−2𝜆−

𝑁 𝑡
)︁)︂

. (17)
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Now, under condition ‖𝑢 (𝑥, 𝑦, 𝑇 )‖ ⩽ 𝑚, and using the method of Lagrange multipliers
for constrained extremum, the norm

⃦⃦
𝑢− 𝑢𝑁

⃦⃦
is estimated as follows:

⃦⃦
𝑢− 𝑢𝑁

⃦⃦2
=

∞∑︁
𝑘=𝑁+1

⎛⎝ 𝑇∫︁
0

𝑓−
𝑘 (𝜏) 𝑒𝜆

−
𝑘 (𝜏−𝑡)𝑑𝜏 −

𝑇∫︁
𝑡

𝑓−
𝑘 (𝜏) 𝑒𝜆

−
𝑘 (𝜏−𝑡)𝑑𝜏

⎞⎠2

⩽

⩽ 2
∞∑︁

𝑘=𝑁+1

⎛⎝𝑒−𝜆−
𝑘 𝑡

𝑇∫︁
0

𝑓−
𝑘 (𝜏) 𝑒𝜆

−
𝑘 𝜏𝑑𝜏

⎞⎠2

+ 2
∞∑︁

𝑘=𝑁+1

⎛⎝ 𝑇∫︁
𝑡

𝑓−
𝑘 (𝜏) 𝑒𝜆

−
𝑘 (𝜏−𝑡)𝑑𝜏

⎞⎠2

⩽

⩽ 2
∞∑︁

𝑘=𝑁+1

𝑒−2𝜆−
𝑘 𝑡

⎛⎝ 𝑇∫︁
0

𝑓−
𝑘 (𝜏) 𝑒𝜆

−
𝑘 𝜏𝑑𝜏

⎞⎠2

+ 2 (𝑇 − 𝑡)
∞∑︁

𝑘=𝑁+1

𝑇∫︁
𝑡

{︀
𝑓−
𝑘 (𝜏)

}︀2
𝑑𝜏 ⩽

⩽ 2𝑚2𝑒2𝜆
−
𝑁+1(𝑇−𝑡) + 2 (𝑇 − 𝑡) 1

𝑁2
. (18)

By inserting the obtained estimates (17) and (18) into inequality (11), we obtain the
overall estimate

⃦⃦
𝑢− 𝑢𝑁𝜀

⃦⃦
⩽

(︂
2𝑚2𝑒2𝜆

−
𝑁+1(𝑇−𝑡) + 2 (𝑇 − 𝑡) 1

𝑁2

)︂1/2

+ 𝜀

(︂
𝑡+

1

2𝜆−1

(︁
1− 𝑒−2𝜆−

𝑁 𝑡
)︁)︂1/2

. (19)

By minimizing the right-hand side of inequalities (16) and (19), the regularization
parameter 𝑁 is determined corresponding to each of 𝑚, 𝑇 , 𝑎, 𝑏 and 𝑙.

5 Numerical results
Thus, we consider several cases as follows:

1. We present the values of the right-hand side of inequality (15) for 𝑎 = 1, 𝑏 = 3, 𝑙 = 3,
𝑇 = 0, 5, 𝑚 = 10000, 𝜀 = 0.001, ∆𝑡 = 0.05 in the form of a table.

Table 5
𝑡 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45
𝑁 3 3 3 3 2 2 2 2 1

In Table 5, by minimizing the right-hand side of estimate (15), the regularization
parameter 𝑁 is determined for each 𝑡𝑘. By selecting the step size ∆𝑥 = 0.6 and the
initial data 𝜙 (𝑥) = (𝑥+ 𝑙) (𝑙 − 𝑥), we observe the numerical results of the approxi-
mate solution relative to the initial data in Table 6 and the graphical results in Figure
3.
Table 7 and Figure 4 present the numerical and graphical representation of the ap-
proximate solution corresponding to the approximate input data.
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Table 6 Approximate solution 𝑢𝑁 (𝑥, 𝑡) with respect to the exact initial data
𝑥∖𝑡 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-3 0 0 0 0 0 0 0 0 0 0 0

-2.4 -35.4624 -1.6087 -1.7678 -1.1034 0.0768 1.3019 2.3571 3.1922 3.8239 4.2888 4.6243
-1.8 -53.3956 -4.0518 -2.5280 0.4616 3.1719 5.2916 6.8758 8.0347 8.8696 9.4633 9.8808
-1.2 -46.7913 -5.1050 3.7880 8.9416 11.7766 13.4298 14.4428 15.0816 15.4881 15.7465 15.9123
-0.6 -22.9065 18.0774 24.7462 25.3678 24.9479 24.3392 23.7496 23.2354 22.8105 22.4782 22.2413
0 812.1108 65.7200 48.5696 41.0673 36.6865 33.7930 31.7636 30.3071 29.2715 28.5742 28.1733

0.6 28.7966 24.5608 22.3084 20.7339 19.4932 18.4334 17.4660 16.5286 15.5696 14.5395 13.3860
1.2 13.9823 13.1664 12.4993 11.9015 11.3298 10.7532 10.1440 9.4745 8.7138 7.8253 6.7641
1.8 7.9198 7.7036 7.5266 7.3835 7.2731 7.1972 7.1605 7.1706 7.2383 7.3785 7.6108
2.4 3.8272 3.8224 3.8507 3.9189 4.0364 4.2162 4.4754 4.8366 5.3292 5.9915 6.8731
3 0 0 0 0 0 0 0 0 0 0 0

Table 7 Approximate solution of 𝑢𝑁𝜀 (𝑥, 𝑡) with respect to the approximate initial data
𝑥∖𝑡 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-3 0 0 0 0 0 0 0 0 0 0 0

-2.4 -35.4663 -1.6089 -1.7681 -1.1035 0.0768 1.3020 2.3573 3.1925 3.8243 4.2892 4.6248
-1.8 -53.4016 -4.0523 -2.5283 0.4616 3.1722 5.2921 6.8766 8.0355 8.8705 9.4643 9.8818
-1.2 -46.7966 -5.1056 3.7884 8.9426 11.7779 13.4312 14.4444 15.0832 15.4897 15.7482 15.9139
-0.6 -22.9091 18.0794 24.7489 25.3705 24.9506 24.3418 23.7521 23.2378 22.8129 22.4805 22.2435
0 812.2010 65.7272 48.5749 41.0717 36.6904 33.7966 31.7669 30.3102 29.2744 28.5769 28.1759

0.6 28.7999 24.5637 22.3110 20.7363 19.4956 18.4357 17.4682 16.5308 15.5718 14.5417 13.3883
1.2 13.9840 13.1680 12.5008 11.9030 11.3313 10.7547 10.1455 9.4760 8.7153 7.8269 6.7658
1.8 7.9207 7.7044 7.5275 7.3844 7.2739 7.1980 7.1613 7.1714 7.2390 7.3791 7.6114
2.4 3.8276 3.8227 3.8511 3.9192 4.0367 4.2164 4.4756 4.8368 5.3293 5.9915 6.8730
3 0 0 0 0 0 0 0 0 0 0 0

Figure 3 Graph of the approximate solution
𝑢𝑁 (𝑥, 𝑡) with respect to the exact initial data

Figure 4 Graph of the approximate solution
of 𝑢𝑁𝜀 (𝑥, 𝑡) with respect to the approximate ini-
tial data

2. The values of the right-hand side of inequality (15) corresponding to 𝑎 = 4, 𝑏 = 1,
𝑙 = 5, 𝑇 = 1, 𝑚 = 1000, 𝜀 = 0.00001, ∆𝑡 = 0.2 are presented in a table.

Table 8
𝑡 0,2 0,4 0,6 0,8
𝑁 3 3 2 2

Table 8 presents the regularization parameter corresponding to each 𝑡𝑘, as in the
previous case. By choosing the step size ∆𝑥 = 1 and the initial data 𝜙 (𝑥) =
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= sin (𝑥+ 𝑙) (𝑙 − 𝑥) in an appropriate form, we obtain the numerical results of the
approximate solution relative to the initial data in Table 9 and the graphical repre-
sentation in Figure 5.
Table 10 and Figure 6 present the numerical and graphical results of the approximate
solution corresponding to the approximate input data.

Table 9 Approximate solution 𝑢𝑁 (𝑥, 𝑡) with respect to the exact initial data
𝑥∖𝑡 0 0.2 0.4 0.6 0.8 1.0
-5 0 0 0 0 0 0
-4 -1.9558 -1.9962 -2.1009 -2.2302 -2.4025 -2.6498
-3 -4.3615 -4.5055 -4.8306 -5.2904 -5.9867 -7.0932
-2 -8.0139 -8.5835 -9.7598 -11.6609 -14.8029 -20.1374
-1 -15.4133 -18.2388 -23.6796 -32.8269 -48.6636 -76.4462
0 -43.0649 -53.5479 -80.5379 -128.1879 -212.5492 -362.2790
1 -21.9716 -26.6764 -34.7971 -48.8165 -73.3047 -116.4183
2 -1.2968 7.4464 23.3581 52.0864 103.6752 196.0174
3 11.8766 27.9099 56.7272 108.3414 200.5901 365.2564
4 11.2220 23.4472 45.3605 84.5442 154.5078 279.3231
5 0 0 0 0 0 0

Table 10 Approximate solution of 𝑢𝑁𝜀 (𝑥, 𝑡) with respect to the approximate initial data
𝑥∖𝑡 0 0.2 0.4 0.6 0.8 1.0
-5 0 0 0 0 0 0
-4 -1.9560 -1.9964 -2.1010 -2.2304 -2.4027 -2.6500
-3 -4.3618 -4.5058 -4.8309 -5.2908 -5.9872 -7.0938
-2 -8.0145 -8.5842 -9.7606 -11.6618 -14.8041 -20.1390
-1 -15.4145 -18.2402 -23.6814 -32.8294 -48.6673 -76.4520
0 -43.0674 -53.5519 -80.5439 -128.1975 -212.5653 -362.3063
1 -21.9733 -26.6784 -34.7997 -48.8201 -73.3102 -116.4271
2 -1.2969 7.4470 23.3599 52.0904 103.6830 196.0322
3 11.8775 27.9120 56.7314 108.3496 200.6052 365.2840
4 11.2228 23.4489 45.3639 84.5506 154.5195 279.3442
5 0 0 0 0 0 0

Figure 5 Graph of the approximate solution
𝑢𝑁 (𝑥, 𝑡) with respect to the exact initial data

Figure 6 Graph of the approximate solution
of 𝑢𝑁𝜀 (𝑥, 𝑡) with respect to the approximate ini-
tial data

6 Conclusion
In this work, the ill-posed problem in the Hadamard sense for an inhomogeneous

parabolic equation with changing direction was studied to be conditionally correct. A
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conditional stability estimate was obtained for the solution of this problem, and a set
of correctness was determined. In this set, theorems on the uniqueness and conditional
stability of the solution of the problem were proved. As a result, a regularized solution
to the problem under consideration was constructed. In this case, the regularization
parameter was determined by reaching the minimum of the norm of the difference between
the exact solution and the regularized solution for the approximate data.

The results of the numerical experiment showed that if the regularization parameter
is chosen in such a way, the regularized solution will be continuously dependent on the
change of the initial data.
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РЕГУЛЯРИЗАЦИЯ НАЧАЛЬНО-КРАЕВОЙ ЗАДАЧИ ДЛЯ
НЕОДНОРОДНОГО ПАРАБОЛИЧЕСКОГО УРАВНЕНИЯ

С МЕНЯЮЩИМСЯ НАПРАВЛЕНИЕМ ВРЕМЕНИ
1,2*Хажиев И.О., 1Шобдаров Э.Б.

*kh.ikrom04@gmail.com
1Национальный университет Узбекистана,

100174, Узбекистан, Ташкент, ул. Университетская, 4;
2Туринский политехнический университет в Ташкенте,

100195, Узбекистан, Ташкент, ул. Кичик Халка Йули. 17.

В данной работе исследована задача Коши с граничными условиями для неод-
нородного параболического уравнения с меняющимся направлением времени. Для
построения решения применён метод разделения переменных (метод Фурье), в ре-
зультате чего изучена соответствующая спектральная задача, определены собствен-
ные значения и собственные функции. Получена априорная оценка решения, дока-
заны теоремы единственности и условной устойчивости в множестве корректности.
Построено регуляризованное решение задачи, соответствующее приближённым на-
чальными данным. Для выбора параметра регуляризации оценена эффективность
по норме разности между точным и регуляризованным решениями. Проведены чис-
ленные эксперименты для различных наборов исходных данных, результаты кото-
рых представлены в виде таблиц и графиков. Из результатов видно, что регуля-
ризованное решение, полученное для приближённых данных, близко к решению,
полученному для точных данных, что подтверждает устойчивость метода к погреш-
ностям в исходной информации.

Ключевые слова: параболическое уравнение с меняющимся направлением време-
ни, некорректная задача, априорная оценка, единственность, условная устойчивость,
метод множителей Лагранжа, регуляризация, приближенное решение.
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