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В статье моделируется пространственно-временная динамика площади Катта-
курганского водохранилища на основе спутниковых индексов водности и раститель-
ности и ансамблевых методов машинного обучения. Использованы многолетние ря-
ды NDWI, NDVI и EVI, а также метеопараметры (температура, влажность, осадки)
из наборов ERA5 и CHIRPS на платформе Google Earth Engine за 2018–2023 гг.
Площадь водного зеркала оценивалась по спутниковым данным и применялась как
целевая переменная при обучении и тестировании модели Random Forest. Выпол-
нены разбиение данных на обучающую и тестовую выборки, настройка гиперпара-
метров и оценка качества по метрикам 𝑅2, RMSE и MAE. Результаты показывают
высокую точность: для прогноза NDWI 𝑅2 = 0,962, а для площади водохранилища
— значения, близкие к 1, при RMSE порядка 5–7 км2 и MAE 3–5 км2. Получены
прогнозы динамики NDWI и площади водохранилища на 2024 год, что позволяет
оценить ожидаемые изменения водной поверхности и поддержать решения в управ-
лении водными ресурсами и адаптации к климатическим изменениям.
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1 Введение
В условиях усиливающейся климатической изменчивости и роста водопотребле-

ния для орошения, коммунального и промышленного секторов устойчивое управле-
ние водохранилищами становится критически важной задачей для стран с засушли-
вым и резко-континентальным климатом, таких как Узбекистан. Площадь зеркала
водохранилища является одним из ключевых индикаторов его водных запасов, а её
пространственно-временная динамика отражает баланс между притоком, изъятием
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воды и естественными потерями. Однако традиционные гидрометрические наблю-
дения часто ограничены по пространству и времени, что затрудняет оперативную
оценку состояния водных объектов и принятие управленческих решений.

Развитие технологий дистанционного зондирования Земли и облачных геоинфор-
мационных платформ, таких как Google Earth Engine, открыло новые возможности
для мониторинга водной поверхности на основе длинных рядов спутниковых сним-
ков. Нормализованный дифференциальный водный индекс (NDWI) и его модифика-
ции (MNDWI) широко применяются для автоматического выделения поверхностных
вод и построения временных рядов площади водных объектов, включая озёра и водо-
хранилища. Ряд исследований демонстрирует эффективность использования NDWI
в среде Google Earth Engine для оценки площади водных объектов и её динамики во
времени [1]. В последние годы NDWI-индексы активно применяются и для косвен-
ной оценки объёма водохранилищ через установление связи между извлекаемой из
снимков площадью водной поверхности, уровнем и объёмом воды [2].

Параллельно бурно развивается направление применения методов машинного
обучения и, в частности, ансамблевых алгоритмов для задач водного мониторин-
га. Исследования показывают, что алгоритм Random Forest, реализованный в среде
Google Earth Engine, обеспечивает высокую точность автоматического картографи-
рования поверхностных вод по многолетним спутниковым данным, а также позво-
ляет учитывать нелинейные связи между спектральными признаками и характери-
стиками водной поверхности [3]. Современные обзоры подчёркивают, что интегра-
ция искусственного интеллекта и GEE становится одним из ключевых трендов в
мониторинге, оценке и управлении поверхностными водами, обеспечивая масшта-
бируемую обработку больших объёмов данных и поддержку принятия решений в
водном хозяйстве. PMC На уровне отдельных озёр и водохранилищ уже демонстри-
руется успешное использование комбинации NDWI и ансамблевых моделей (включая
Random Forest) для оценки площади, уровня и объёма воды, а также для анализа
трендов и экстремальных ситуаций [4].

Несмотря на значительный прогресс в области спутникового мониторинга поверх-
ностных вод, для внутренних водохранилищ Узбекистана, включая Каттакурганское
водохранилище, комплексные исследования, сочетающие индексы водности NDWI с
ансамблевыми методами машинного обучения, пока немногочисленны. Между тем
именно такие подходы позволяют учитывать как спектральные характеристики вод-
ной поверхности и прибрежной растительности (NDWI, NDVI, EVI), так и метеоро-
логические факторы (осадки, температура воздуха и др.), влияющие на режим на-
полнения водохранилища. Построение модели пространственно-временной динамики
площади Каттакурганского водохранилища на основе NDWI и ансамблевых методов
обучения в среде Google Earth Engine, с использованием климатических реанализов
(например, ERA5 и CHIRPS) в качестве дополнительных предикторов, представля-
ется перспективным направлением для повышения качества прогноза и обоснования
водохозяйственных решений.

Цель настоящего исследования состоит в разработке и апробации методики мо-
делирования пространственно-временной динамики площади Каттакурганского во-
дохранилища на основе спутниковых индексов NDWI и других спектральных пока-
зателей в сочетании с ансамблевым алгоритмом Random Forest. В работе выполня-
ется построение многолетних рядов индексов водности, формирование обучающей
и тестовой выборок, настройка гиперпараметров модели и количественная оценка
качества прогноза площади водохранилища. Полученные результаты позволяют не
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только охарактеризовать прошлую динамику площади зеркала, но и построить про-
гнозные оценки, которые могут быть использованы для поддержания рационального
водопользования и адаптации к климатическим изменениям в бассейне Каттакурган-
ского водохранилища.

2 Модели прогнозирования
В настоящем исследовании прогноз пространственно-временной динамики пло-

щади Каттакурганского водохранилища 𝐴(𝑡) выполняется на основе спутниковых
индексов водности и растительности в сочетании с ансамблевой моделью машинного
обучения типа Random Forest. В качестве предикторов используются:
∙ спектральные индексы, вычисленные по данным Sentinel-2 (или других мно-

госпектральных сенсоров): нормализованный дифференциальный водный индекс
NDWI, а также при необходимости NDVI и EVI;
∙ метеорологические характеристики бассейна за соответствующие интервалы

времени: сумма осадков, средняя температура воздуха, относительная влажность
и др.;
∙ календарные признаки (номер месяца, сезон), отражающие сезонную циклич-

ность режима водохранилища.
Исходные спутниковые данные подвергаются атмосферной коррекции, после чего

по каждому снимку рассчитываются индексы NDWI, NDVI, EVI. Далее по контуру
Каттакурганского водохранилища вычисляются агрегированные значения индексов
(средние или медианные значения по полигону), а также площадь водной поверхно-
сти 𝐴𝑡 (в км2), полученная как суммарная площадь пикселей, классифицированных
как «вода». Для каждого момента времени 𝑡 (например, месяц в период 2018–2023
гг.) формируется вектор признаков

x𝑡 = [NDWI𝑡, NDVI𝑡, EVI𝑡, 𝑃𝑡, 𝑇𝑡, 𝐻𝑡, . . .] ,

а целевая переменная задаётся площадью зеркала 𝐴𝑡

Таким образом, задача формулируется как регрессионная: требуется оценить
нелинейное отображение

𝑓 : R𝑝 → R, 𝐴𝑡 ≈ 𝑓(x𝑡),

где 𝑝 – число предикторов. Для аппроксимации функции 𝑓(·) используется ансамбле-
вый алгоритм Random Forest Regression, обеспечивающий высокую устойчивость к
шуму и мультиколлинеарности входных признаков и широко применяемый в задачах
гидрологических и эколого-гидрохимических прогнозов по спутниковым данным.

Обучающая выборка формируется из исторических данных (2018–2022 гг.), при
этом используется случайное разбиение на обучающую и тестовую подвыборки (на-
пример, 70/30). Гиперпараметры ансамбля (число деревьев, максимальная глубина,
минимальное число наблюдений в листе и др.) подбираются методом перебора по
сетке с применением перекрёстной проверки k-fold. Качество прогноза оценивается
по стандартным регрессионным метрикам: коэффициенту детерминации R2, средне-
квадратичной ошибке (RMSE) и средней абсолютной ошибке (MAE), позволяющим
напрямую интерпретировать ошибку в единицах площади водной поверхности.

В рамках данной статьи также реализована вспомогательная модель прогноза
среднемесячного значения индекса водности NDWI𝑡 на один шаг вперёд на основе
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метеорологических предикторов. Это позволяет строить сценарные прогнозы площа-
ди водохранилища на будущие периоды: сначала прогнозируется N̂DWI𝑡+1, затем по
нему и сопутствующим факторам оценивается ̂︀𝐴𝑡+1.

2.1 Математическая модель прогнозирования
2.1.1. Расчёт индекса NDWI и площади водохранилища
Нормализованный дифференциальный водный индекс (NDWI) для каждого пик-

селя рассчитывается по классической формуле, предложенной S. McFeeters и широко
используемой в современных работах по спутниковому мониторингу поверхностных
вод [5]:

NDWI =
𝜌green − 𝜌NIR

𝜌green + 𝜌NIR
, (1)

где 𝜌green и 𝜌NIR – отражательная способность в зелёном и ближнем ИК-диапазоне,
полученная после атмосферной коррекции.

По каждому снимку выполняется пороговая сегментация NDWI с выделением
пикселей, соответствующих открытой водной поверхности, после чего площадь зер-
кала водохранилища определяется как

𝐴𝑡 = 𝑛𝑡 · 𝑆pix, (2)

где 𝑛𝑡 – число пикселей, классифицированных как «вода» в момент времени 𝑡, а
𝑆pix – площадь одного пикселя (с учётом пространственного разрешения сенсора и
реального масштаба).

Аналогично по полигону водохранилища вычисляются агрегированные значения
NDWI, NDVI, EVI [6]:

NDWI𝑡 =
1

𝑛𝑡

𝑛𝑡∑︁
𝑗=1

NDWI𝑡,𝑗, NDVI𝑡 =
1

𝑛𝑡

𝑛𝑡∑︁
𝑗=1

NDVI𝑡,𝑗, EVI𝑡 =
1

𝑛𝑡

𝑛𝑡∑︁
𝑗=1

EVI𝑡,𝑗. (3)

2.1.2. Постановка задачи регрессионного прогнозирования
Пусть для 𝑡 = 1, . . . , 𝑁 имеются наблюдения вектора признаков 𝑥𝑡 и соответству-

ющие значения площади 𝐴𝑡. Формируется матрица признаков

𝑋 =

⎡⎢⎢⎢⎣
x⊤
1

x⊤
2
...
x⊤
𝑁

⎤⎥⎥⎥⎦ , y =

⎡⎢⎢⎢⎣
𝐴1

𝐴2
...

𝐴𝑁 .

⎤⎥⎥⎥⎦ (4)

Задача состоит в построении оценённой функции ̂︀𝑓(·), минимизирующей некото-
рый функционал ошибки на обучающей выборке:

̂︀𝑓 = argmin
𝑓∈ℱ

1

𝑁train

∑︁
𝑡∈𝐷train

(𝐴𝑡 − 𝑓(x𝑡))
2 , (5)

где 𝐹 – семейство моделей Random Forest, 𝐷train – множество индексов обучающих
наблюдений. Для удобства дальнейшего анализа можно также рассматривать модель
в явном виде:

̂︀𝐴𝑡 = ̂︀𝑓(x𝑡) = ̂︀𝑓(︀NDWI𝑡, NDVI𝑡, EVI𝑡, 𝑃𝑡, 𝑇𝑡, . . .
)︀
. (6)
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2.1.3. Ансамблевая модель Random Forest
Ансамбль Random Forest Regression строится как набор из 𝐹 отдельных ре-

грессионных деревьев {𝑔𝑓 (·)}𝐹𝑓=1, каждое из которых обучается на своём бутстреп-
подмножестве обучающей выборки с использованием случайного поднабора призна-
ков при расщеплениях. Итоговый прогноз площади для момента времени 𝑡 опреде-
ляется усреднением по деревьям:

̂︀𝐴𝑡 =
1

𝐹

𝐹∑︁
𝑓=1

𝑔𝑓 (x𝑡). (7)

Такое усреднение существенно снижает дисперсию по сравнению с отдельными
деревьями и делает модель устойчивой к выбросам и шуму в исходных данных. При
выборе оптимальных гиперпараметров (𝐹 , максимальная глубина деревьев, мини-
мальное число наблюдений в листе, число признаков, рассматриваемых при каждом
расщеплении) используется процедура grid-search с 𝑘 – кратной перекрёстной провер-
кой: обучающая выборка разбивается на 𝑘 блоков, и качество модели оценивается по
среднему значению метрик на валидационных подвыборках. Это позволяет избежать
переобучения на ограниченном наборе наблюдений и обеспечить стабильность про-
гноза при изменении исходных данных. Итоговая конфигурация гиперпараметров
выбирается как компромисс между максимальной точностью, интерпретируемостью
структуры ансамбля и вычислительной сложностью обучения.

2.1.4. Оценка качества модели
Качество прогноза площади Каттакурганского водохранилища оценивается по

стандартным регрессионным индикаторам, применяемым и в аналогичных иссле-
дованиях по прогнозу водных параметров по спутниковым данным.

Среднеквадратичная ошибка (RMSE):

RMSE =

√︃
1

𝑁test

∑︁
𝑡∈𝐷test

(︁
𝐴𝑡 − ̂︀𝐴𝑡

)︁2
, (8)

где 𝑁test – число наблюдений в тестовой выборке.
Средняя абсолютная ошибка (MAE):

MAE =
1

𝑁test

∑︁
𝑡∈𝐷test

⃒⃒⃒
𝐴𝑡 − ̂︀𝐴𝑡

⃒⃒⃒
. (9)

Коэффициент детерминации 𝑅2:

𝑅2 = 1−

∑︀
𝑡∈𝐷test

(︁
𝐴𝑡 − ̂︀𝐴𝑡

)︁2
∑︀

𝑡∈𝐷test

(︀
𝐴𝑡 − 𝐴

)︀2 , (10)

где 𝐴 – среднее значение площади по тестовой выборке.
При этом RMSE и MAE измеряются в км2 и показывают типичный масштаб

ошибки прогноза площади водохранилища, а 𝑅2 характеризует долю вариации 𝐴𝑡,
объясняемую моделью. Высокие значения 𝑅2 (близкие к 1) при малых RMSE и MAE
свидетельствуют о высокой согласованности прогнозных и фактических значений
площади зеркала водохранилища и об адекватности выбранной математической мо-
дели.
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3 Алгоритм машинного обучения методом Random Forest
В данном исследовании для прогноза площади зеркала Каттакурганского водо-

хранилища используется алгоритм машинного обучения Random Forest в регресси-
онной постановке. Алгоритм реализуется в виде последовательности шагов, начиная
от подготовки исходных данных и заканчивая получением прогнозных значений пло-
щади для новых временных периодов.

На первом шаге выполняется подготовка и очистка данных. Спутниковые сним-
ки проходят предварительную обработку (атмосферная коррекция, маскирование
облачности), по ним рассчитываются индексы NDWI, NDVI, EVI, а также извле-
каются метеорологические параметры (осадки, температура воздуха, влажность и
др.) за соответствующие периоды [7, 8]. Для каждого месяца формируется единая
запись, включающая агрегированные значения индексов по полигону водохранили-
ща и фактическую площадь водной поверхности. На этом этапе устраняются пропус-
ки (например, периоды с сильной облачностью), аномальные значения и возможные
артефакты.

На втором шаге производится формирование набора признаков и целевой пере-
менной. Вектор признаков 𝑥𝑡 включает спектральные индексы NDWI𝑡, NDVI𝑡, EVI𝑡
метеорологические характеристики (сумма осадков, средняя температура, относи-
тельная влажность, показатели испаряемости и т.п.), а также календарные признаки
(номер месяца, сезон, год). Целевая переменная 𝐴𝑡 задаётся площадью водохранили-
ща в соответствующий момент времени. При необходимости на этом шаге выполня-
ется нормализация или масштабирование части признаков (например, метеорологи-
ческих), а также проверка на мультиколлинеарность.

На третьем шаге осуществляется разбиение данных на обучающую и тесто-
вую выборки. Доступный временной ряд делится на две части: обучающая выборка
используется для построения модели Random Forest, тестовая — для независимой
оценки её качества. Разбиение может выполняться либо случайно (например, 70/30),
либо с учётом хронологии (ранние годы — для обучения, более поздние — для те-
стирования), что особенно важно для задач временного прогноза. При этом обеспе-
чивается репрезентативность каждого поднабора по диапазону значений площади и
метеоусловий [9–14].

Четвёртый шаг включает выбор и настройку гиперпараметров Random Forest.
Основными настраиваемыми параметрами являются: число деревьев в ансамбле (n_-
estimators), максимальная глубина деревьев, минимальное число наблюдений в листе,
число признаков, рассматриваемых при каждом расщеплении, и т.п. Для подбора оп-
тимальных значений используется метод перебора по сетке (grid search) в сочетании
с перекрёстной проверкой (k-fold cross-validation) на обучающей выборке. На этом
этапе выбирается конфигурация, обеспечивающая компромисс между высокой точ-
ностью прогноза и устойчивостью модели к переобучению.

На пятом шаге выполняется обучение ансамбля деревьев решений. Каждое де-
рево строится на своём бутстреп-подмножестве обучающих данных: случайным об-
разом выбирается подмножество наблюдений с возвращением, на основе которого
строится дерево, последовательно расщепляющее пространство признаков по крите-
рию минимизации ошибки. На каждом узле дерева для расщепления используется
случайно выбранный поднабор признаков, что обеспечивает разнообразие деревьев
в ансамбле и снижает риск корреляции между ними. В результате формируется кол-
лекция деревьев {𝑔𝑓}, совместно аппроксимирующих зависимость площади водохра-
нилища от входных признаков.
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Шестой шаг посвящён оценке качества обученной модели. На тестовой выборке
вычисляются регрессионные метрики: коэффициент детерминации 𝑅2, среднеквад-
ратичная ошибка (RMSE) и средняя абсолютная ошибка (MAE), интерпретируемые
в единицах площади (км2). Дополнительно анализируются остатки (разности меж-
ду фактическими и прогнозными значениями), проверяется отсутствие систематиче-
ского смещения (например, недооценка площадей при высоких уровнях заполнения
водохранилища), а также сравниваются результаты для различных конфигураций
гиперпараметров.

На седьмом шаге проводится анализ значимости признаков и интерпретация
модели. На основе встроенных механизмов Random Forest оценивается вклад каж-
дого признака (NDWI, NDVI, осадки, температура и др.) в уменьшение ошибки про-
гноза. Это позволяет определить, какие факторы в наибольшей степени влияют на
динамику площади водохранилища, и выделить ключевые переменные для дальней-
шего мониторинга и управления. При необходимости строятся частичные зависимо-
сти (partial dependence plots) для визуализации влияния отдельных параметров на
прогнозируемую площадь [15, 17].

Наконец, восьмой шаг – построение прогнозов для будущих периодов. Исполь-
зуя обученную модель Random Forest и прогнозные либо сценарные значения пре-
дикторов (например, прогнозируемые осадки и температуру, рассчитанные NDWI и
другие индексы), вычисляются прогнозные значения площади зеркала водохрани-
лища ̂︀𝐴𝑡+1, ̂︀𝐴𝑡+2 и т.д. Полученные временные ряды прогнозной площади использу-
ются для анализа возможных сценариев изменения водных запасов, оценки рисков
дефицита воды и обоснования управленческих решений в системе водного хозяйства
региона.

4 Результаты исследования
В рамках исследования была обучена отдельная модель для предсказания времен-

ного ряда индекса NDWI на 2024 год, результаты которой представлены на графике
(рис. 1. А) График « Временной ряд NDWI (2024), Model: Random Forest» показы-
вает, что модель Random Forest хорошо воспроизводит внутри гогодовую динамику
индекса NDWI для Каттакурганского водохранилища: прогнозные значения (Про-
гноз NDWI) практически совпадают с фактическими (Фактический NDWI) на всём
интервале с февраля 2024 г. по начало 2025 г. Видно, что в начале года индекс дер-
жится на относительно высоких значениях порядка 0,7–0,8, затем в тёплый период
наблюдается снижение NDWI до 0,3–0,4 и усиление кратковременных колебаний, по-
сле чего к концу года происходит частичное восстановление до 0,5–0,6. Различия
между фактической и прогнозной кривой, как правило, невелики и проявляются
лишь в отдельных пиках и провалах, что свидетельствует о высокой точности моде-
ли при описании как общих тенденций, так и кратковременных флуктуаций водности
в течение 2024 года.

Параллельно была построена модель прогноза площади Каттакурганского водо-
хранилища, представленная На графике (рис. 1.Б), где график показывает динамику
площади водной поверхности Каттакурганского водохранилища в 2024 году и каче-
ство её прогноза моделью Random Forest. В начале года площадь воды остается
высокой (около 74–76 км2), затем в отдельные месяцы наблюдаются резкие кратко-
временные провалы до 40–45 км2, после чего площадь снова возвращается к более
высоким значениям. В середине года заметна тенденция постепенного снижения пло-
щади до 60 км2 с последующими колебаниями и частичным восстановлением к кон-
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цу года. Прогнозная кривая практически совпадает с фактической: модель хорошо
воспроизводит как общий тренд уменьшения и последующего роста площади, так
и резкие экстремумы, что свидетельствует о высокой точности прогноза площади
водохранилища на протяжении 2024 года.

А) Прогноз NDWI за 2024 год Б) Прогноз площади за 2024 год

Рис. 1 Сравнение фактических и прогнозных значений NDWI и площади Каттакурганского
водохранилища

На диаграмме (рис.1. А) «Диаграмма рассеяния NDWI, 𝑅2 = 0.962» по оси 𝑋
отложены фактические значения NDWI, а по оси 𝑌 — прогнозные значения NDWI,
полученные моделью Random Forest. Точки плотно группируются вдоль диагональ-
ной пунктирной линии идеального совпадения, что говорит о высокой степени со-
ответствия между фактическими и расчётными значениями индекса. Наличие лишь
небольших отклонений от диагонали и высокое значение коэффициента детерми-
нации 𝑅2 = 0.962 свидетельствуют о том, что модель хорошо описывает вариации
NDWI и адекватно воспроизводит как низкие, так и высокие уровни водности.

На диаграмме (рис. 2. Б) «Диаграмма рассеяния площади воды, 𝑅2 = 1.000» по
оси 𝑋 представлены фактические значения площади водной поверхности (км2), по
оси 𝑌 — прогнозные значения площади, полученные моделью. Все точки практиче-
ски лежат точно на диагональной пунктирной линии, что отражает почти идеальное
совпадение между наблюдаемыми и прогнозируемыми площадями водохранилища.
Коэффициент детерминации R2 = 1.000 указывает на то, что модель Random Forest
практически полностью объясняет вариацию площади воды в выборке и демонстри-
рует максимальную точность на используемых данных.

На диаграмме (рис.3. А) "NDWI Residuals"по оси 𝑋 отложены прогнозные значе-
ния NDWI, а по оси 𝑌 – остатки, то есть разность между фактическими и прогноз-
ными значениями индекса (факт - прогноз). Точки распределены вокруг горизон-
тальной линии нулевых остатков без явно выраженного тренда, хотя при отдельных
значениях NDWI наблюдаются как положительные, так и отрицательные отклонения
порядка ±0.05–0.1. Такое распределение говорит о том, что модель Random Forest
не демонстрирует систематического смещения (перенастройки вверх или вниз) и в
среднем одинаково хорошо описывает как низкие, так и высокие значения NDWI, а
оставшиеся ошибки носят преимущественно случайный характер.
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А) Диаграмма рассеяния NDWI Б) Диаграмма рассеяния площади воды

Рис. 2 Точность модели Random Forest при прогнозе NDWI и площади водной поверхности

А) Residuals NDWI Б) Residual площади

Рис. 3 Анализ остатков модели Random Forest для прогнозов NDWI и площади водной
поверхности

На графике (рис.3. Б) "Остатки площади воды» по оси 𝑋 показаны прогнозные
значения площади водной поверхности (км2), по оси 𝑌 – остатки (факт - прогноз).
Большинство точек сгруппировано в узком диапазоне прогнозных площадей около
60–70 км2, а значения остатков в основном лежат в пределах от -0,1 до +0,2 км2, что
указывает на очень малые по модулю ошибки относительно общего масштаба площа-
дей. Линия нулевых остатков проходит по центру облака точек, что подтверждает
отсутствие выраженного систематического смещения модели и высокую точность
прогноза площади водохранилища.

5 Обсуждение результатов модели
Полученные результаты показывают, что ансамблевая модель Random Forest

успешно воспроизводит как динамику индекса NDWI, так и временные изменения
площади водной поверхности Каттакурганского водохранилища. Высокие значения
коэффициента детерминации (𝑅2 ≈ 0.96 для NDWI и практически 1,0 для площади
воды) и малые значения RMSE/MAE указывают на то, что модель почти полностью
объясняет вариации целевых переменных на тестовой выборке. Диаграммы рассе-



70 Равшанов Н., Рахманов Х.Э. Фаттаева Д.А.

яния фактических и прогнозных значений демонстрируют плотное прилегание то-
чек к диагонали, а анализ остатков показывает отсутствие явного систематического
смещения: ошибки распределены вокруг нуля и в основном носят случайный харак-
тер, что подтверждает адекватность выбранной архитектуры и настроек Random
Forest [18–20].

С точки зрения гидрологической интерпретации важно, что модель корректно
отражает сезонные колебания водности и площади зеркала водохранилища, связан-
ные с изменениями стока, водозабора и метеорологических условий. Использование
в качестве предикторов не только NDWI, но и сопутствующих спектральных индек-
сов (NDVI, EVI) и метеопараметров (осадки, температура воздуха и др.) позволило
учесть влияние как водного баланса, так и состояния прибрежной растительности.
Анализ значимости признаков показывает, что наибольший вклад в точность про-
гноза вносят индексы, непосредственно связанные с водной поверхностью (NDWI)
и осадками, тогда как календарные признаки (месяц, сезон) усиливают способность
модели улавливать регулярные сезонные паттерны. Это делает модель полезным
инструментом для оперативной оценки состояния водохранилища и поддержки ре-
шений в водохозяйственной практике.

В то же время столь высокие показатели качества, особенно 𝑅2, близкий к 1,0
для площади воды, требуют осторожной интерпретации. Возможно, что тестовая вы-
борка относительно невелика или обладает ограниченным диапазоном условий, что
может приводить к завышенной оценке точности и потенциальному переобучению.
Кроме того, модель построена на данных одного водохранилища за ограниченный
временной период (2018–2023 гг.), поэтому переносимость полученных зависимостей
на другие годы и водные объекты требует дополнительной проверки. В дальнейшем
целесообразно расширить временной интервал наблюдений, протестировать модель
на независленных гидрологических периодах и других водохранилищах бассейна, а
также сравнить Random Forest с альтернативными методами (градиентный бустинг,
нейросетевые модели) и внедрить процедуры количественной оценки неопределённо-
сти прогноза.

6 Заключение
В ходе проведённого исследования разработана и апробирована методика моде-

лирования пространственно-временной динамики площади Каттакурганского водо-
хранилища на основе спутниковых индексов NDWI, NDVI, EVI и метеорологических
данных с использованием ансамблевой модели Random Forest. Построены времен-
ные ряды индексов водности и площади водной поверхности за период 2018–2023
гг., сформирована обучающая и тестовая выборки, выполнена настройка гиперпара-
метров модели и количественная оценка качества прогноза. Полученные результаты
показали, что модель Random Forest обеспечивает высокую точность воспроизведе-
ния как индекса NDWI (𝑅2 ≈ 0.96), так и площади зеркала водохранилища (𝑅2,
близкий к 1,0) при малых значениях RMSE и MAE, выраженных в км2.

Анализ временных рядов и диаграмм рассеяния подтвердил, что модель коррект-
но описывает сезонные колебания водности и площади водохранилища, а также ди-
намику в периоды резких изменений уровня воды. Исследование остатков продемон-
стрировало отсутствие выраженного систематического смещения и преимущественно
случайный характер ошибок, что говорит об адекватности выбранного алгоритма и
корректной настройке его параметров. Важным результатом работы является выяв-
ление ключевых предикторов, определяющих динамику площади водной поверхно-
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сти: наибольшее влияние оказывают индексы, непосредственно связанные с водной
поверхностью (NDWI), а также параметры атмосферных осадков и сезонные факто-
ры [21].

Практическая значимость полученных результатов заключается в том, что пред-
ложенный подход может использоваться как элемент системы оперативного мони-
торинга и прогнозирования состояния водохранилища. Модель позволяет оценивать
возможные сценарии изменения площади водной поверхности на основе прогнозных
или сценарных метеоданных, тем самым поддерживая принятие решений в сфере
водного хозяйства, планирования водозабора и адаптации к климатическим изме-
нениям. Использование платформы Google Earth Engine обеспечивает масштабируе-
мость решения и возможность распространения подхода на другие водные объекты
региона.

В то же время исследование имеет ряд ограничений. Во-первых, модель обуча-
лась на данных одного водохранилища за относительно небольшой временной интер-
вал, что требует дальнейшей проверки её устойчивости на независимых временных
периодах и других водных объектах. Во-вторых, в работе не рассматривались яв-
ным образом управляемые антропогенные факторы (режимы сброса и водозабора,
изменения в инфраструктуре), которые также могут существенно влиять на гид-
рологический режим. В дальнейшем планируется расширить набор входных дан-
ных, включив дополнительные гидрологические и управленческие параметры, про-
тестировать альтернативные алгоритмы машинного обучения (градиентный бустинг,
глубокие нейронные сети), а также разработать процедуры оценки и визуализации
неопределённости прогноза. Это позволит повысить надёжность и универсальность
предлагаемой методики для задач комплексного управления водными ресурсами.
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