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В статье предложена динамическая модель связанной задачи термоупругости в
напряжениях. Сформулирована связанная краевая задача, состоящая из трёх диф-
ференциальных уравнений относительно компонент тензора напряжений и темпе-
ратуры, а также уравнения притока тепла с соответствующими начальными и гра-
ничными условиями. Разработаны явные и неявные конечно-разностные уравнения,
решаемые последовательным применением метода прогонки по координатным осям,
и рекуррентных соотношений, соответственно. Численно решена связанная динами-
ческая задача термоупругости для анизотропного прямоугольника в напряжениях.
Сравнением результатов явных и неявных разностных схем показана достоверность
полученных численных результатов и справедливость предложенной связанной ди-
намической краевой задачи термоупругости в напряжениях.
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1 Введение
Математическое и численное моделирование процесса деформирования с учетом

взаимовлияния термических и механических факторов является актуальной пробле-
мой термоупругости и математического моделирования. В механике, обычно при ре-
шении термоупругих задач температурное поле считается известным как решение
уравнения теплопроводности. Но, для того чтобы более адекватнее описать процесс
деформирования с учетом температуры, наряду с уравнениями движения необходи-
мо рассмотреть уравнение притока тепла. Тогда краевая задача становится связан-
ной относительно перемещений и температуры. В статическом случае, задача стано-
вится несвязанной, и механические и тепловые уравнения могут быть решены неза-
висимо друг от друга [1, 2].

В общем случае, связанная динамическая краевая задача термоупругости состо-
ит из уравнения движения, соотношения между напряжениями и деформациями с
учетом температуры, соотношения Коши, и уравнения притока тепла с соответствую-
щими начальными и краевыми условиями. Все вышеизложенные задачи термоупру-
гости и термопластичности обычно решаются в перемещениях [2, 6–8].

В последние время формулировка связанных задач термоупругости относительно
напряжений и температуры, и их численное решение становится актуальным. Обыч-
но, краевые задачи в напряжениях рассматриваются в рамках уравнений Бельтрами-
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Мичелла. В этом направлении можно отметить работы Коновалова [4] и др. В рабо-
тах [3, 5, 9–16] приведены методы решения краевых задач.

Рассматривается связанная задача динамической термоупругости без использо-
вания уравнений Бельтрами-Мичелла. Численно решена плоская задача о свободной
пластине, находящейся в начальный момент времени в температурном поле куполо-
образной формы.

2 Постановка задачи
Обычно, связанная задача плоской термоупругости состоит из уравнений движе-

ния
𝜕𝜎11
𝜕𝑥

+
𝜕𝜎12
𝜕𝑦

+𝑋1 = 𝜌
𝜕2𝑢

𝜕𝑡2
, (1)

𝜕𝜎21
𝜕𝑥

+
𝜕𝜎22
𝜕𝑦

+𝑋2 = 𝜌
𝜕2𝑣

𝜕𝑡2
, (2)

соотношения Дюамеля-Неймана для анизотропных тел в двумерном виде

𝜎11 = 𝐶1111𝜀11 + 𝐶1122𝜀22 − 𝛽11(𝑇 − 𝑇0), (3)

𝜎22 = 𝐶2211𝜀11 + 𝐶2222𝜀22 − 𝛽22(𝑇 − 𝑇0), (4)

𝜎12 = 2𝐶1212𝜀12, (5)

соотношения Коши
𝜀11 =

1

2

(︂
𝜕𝑢

𝜕𝑥
+
𝜕𝑢

𝜕𝑥

)︂
=
𝜕𝑢

𝜕𝑥
, (6)

𝜀22 =
1

2

(︂
𝜕𝑣

𝜕𝑦
+
𝜕𝑣

𝜕𝑦

)︂
=
𝜕𝑣

𝜕𝑦
, (7)

𝜀12 =
1

2

(︂
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥

)︂
, (8)

и уравнение притока тепла для анизотропных тел

𝜆11
𝜕2𝑇

𝜕𝑥2
+ 𝜆22

𝜕2𝑇

𝜕𝑦2
− 𝑐𝜀

𝜕𝑇

𝜕𝑡
− 𝑇

(︂
𝛽11

𝜕𝜀11
𝜕𝑡

+ 𝛽22
𝜕𝜀22
𝜕𝑡

)︂
= 0, (9)

начальные

𝜎11 (𝑥, 𝑦, 𝑡)|𝑡=0 = 𝜙1, 𝜎22 (𝑥, 𝑦, 𝑡)|𝑡=0 = 𝜙2,

𝜎12 (𝑥, 𝑦, 𝑡)|𝑡=0 = 𝜙3, 𝑇 (𝑥, 𝑦, 𝑡)|𝑡=0 = 𝑇0,

𝜕𝜎11
𝜕𝑡

⃒⃒⃒⃒
𝑡=0

= 𝜓1,
𝜕𝜎22
𝜕𝑡

⃒⃒⃒⃒
𝑡=0

= 𝜓2,
𝜕𝜎12
𝜕𝑡

⃒⃒⃒⃒
𝑡=0

= 𝜓3,
𝜕𝑇

𝜕𝑡

⃒⃒⃒⃒
𝑡=0

= 𝜓4,

(10)

и граничные условия

𝜎11 (𝑥, 𝑦, 𝑡)|𝑥=Γ = 𝜎0, 𝜎22 (𝑥, 𝑦, 𝑡)|𝑥=Γ = 𝜎0, 𝜎12 (𝑥, 𝑦, 𝑡)|𝑥=Γ = 𝜎0,

𝑇 (𝑥, 𝑦, 𝑡)|𝑥=Γ = 𝑇1, 𝑇 (𝑥, 𝑦, 𝑡)|𝑥=Γ = 𝑇2.
(11)

где 𝜎𝑖𝑗 – тензор напряжений, 𝜀𝑖𝑗 – тензор деформаций, 𝑢𝑖 – перемещения, 𝑇 – тем-
пература, 𝑋𝑖 – объёмные силы, 𝐶𝑖𝑗𝑘𝑙 – тензор четвёртого ранга определяющий ме-
ханические свойства материала, 𝑐𝜀 – теплоемкость при постоянной деформации, 𝛽𝑖𝑗
– коэффициенты теплового расширения, 𝜆𝑖𝑗 – коэффициенты теплопроводности, 𝜌
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– плотность, 𝛿𝑖𝑗 – символ Кронекера, Для того, чтобы записать задачу (1-9) отно-
сительно напряжений и температуры, продифференцировав уравнение (1) по х и
уравнение (2) по у получим

𝜕2𝜎11
𝜕𝑥2

+
𝜕2𝜎12
𝜕𝑥𝜕𝑦

+𝑋1 = 𝜌
𝜕2

𝜕𝑡2

(︂
𝜕𝑢

𝜕𝑥

)︂
, (12)

𝜕2𝜎21
𝜕𝑥𝜕𝑦

+
𝜕2𝜎22
𝜕𝑦2

+𝑋2 = 𝜌
𝜕2

𝜕𝑡2

(︂
𝜕𝑣

𝜕𝑥

)︂
. (13)

С учетом соотношений Коши (6-7) уравнения (12-13) принимают следующий вид

𝜕2𝜎11
𝜕𝑥2

+
𝜕2𝜎12
𝜕𝑥𝜕𝑦

+𝑋1 = 𝜌
𝜕2𝜀11
𝜕𝑡2

,

𝜕2𝜎21
𝜕𝑥𝜕𝑦

+
𝜕2𝜎22
𝜕𝑦2

+𝑋2 = 𝜌
𝜕2𝜀22
𝜕𝑡2

,

или
𝜕2𝜀11
𝜕𝑡2

=
1

𝜌
(
𝜕2𝜎11
𝜕𝑥2

+
𝜕2𝜎12
𝜕𝑥𝜕𝑦

+𝑋1), (14)

𝜕2𝜀22
𝜕𝑡2

=
1

𝜌
(
𝜕2𝜎21
𝜕𝑥𝜕𝑦

+
𝜕2𝜎22
𝜕𝑦2

+𝑋2). (15)

Далее дважды продифференцируем уравнения (3) и (4) по времени 𝑡

𝜕2𝜎11
𝜕𝑡2

= 𝐶1111
𝜕2𝜀11
𝜕𝑡2

+ 𝐶1122
𝜕2𝜀22
𝜕𝑡2

− 𝛽11
𝜕2𝑇

𝜕𝑡2
, (16)

𝜕2𝜎22
𝜕𝑡2

= 𝐶2211
𝜕2𝜀11
𝜕𝑡2

+ 𝐶2222
𝜕2𝜀22
𝜕𝑡2

− 𝛽22
𝜕2𝑇

𝜕𝑡2
. (17)

Подставляя (14) и (15) в (16) и (17) при отсутствии объемных сил, получим

𝜕2𝜎11
𝜕𝑡2

=
𝐶1111

𝜌

𝜕2𝜎11
𝜕𝑥2

+
𝐶1111 + 𝐶1122

𝜌

𝜕2𝜎12
𝜕𝑥𝜕𝑦

+
𝐶1122

𝜌

𝜕2𝜎22
𝜕𝑦2

− 𝛽11
𝜕2𝑇

𝜕𝑡2
, (18)

𝜕2𝜎22
𝜕𝑡2

=
𝐶2211

𝜌

𝜕2𝜎11
𝜕𝑥2

+
𝐶2211 + 𝐶2222

𝜌

𝜕2𝜎21
𝜕𝑥𝜕𝑦

+
𝐶2222

𝜌

𝜕2𝜎22
𝜕𝑦2

− 𝛽22
𝜕2𝑇

𝜕𝑡2
. (19)

Далее продифференцировав уравнения движения (1) по 𝑦 и (2) по 𝑥, без учета
объемных сил можно найти следующие соотношения

𝜕2𝜎11
𝜕𝑥𝜕𝑦

+
𝜕2𝜎12
𝜕𝑦2

= 𝜌
𝜕2

𝜕𝑡2

(︂
𝜕𝑢

𝜕𝑦

)︂
, (20)

𝜕2𝜎21
𝜕𝑥2

+
𝜕2𝜎22
𝜕𝑥𝜕𝑦

= 𝜌
𝜕2

𝜕𝑡2

(︂
𝜕𝑣

𝜕𝑥

)︂
, (21)

сложив (20) и (21) полученное разделив на 2 будим иметь

1

2𝜌

(︂
𝜕2𝜎11
𝜕𝑥𝜕𝑦

+
𝜕2𝜎21
𝜕𝑥2

+
𝜕2𝜎12
𝜕𝑦2

+
𝜕2𝜎22
𝜕𝑥𝜕𝑦

)︂
=

1

2

𝜕2

𝜕𝑡2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
), (22)
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подставляя (8) в (22) получим

1

2𝜌

(︂
𝜕2𝜎11
𝜕𝑥𝜕𝑦

+
𝜕2𝜎21
𝜕𝑥2

+
𝜕2𝜎12
𝜕𝑦2

+
𝜕2𝜎22
𝜕𝑥𝜕𝑦

)︂
=
𝜕2𝜀12
𝜕𝑡2

, (23)

далее продифференцируем соотношение (5) дважды по времени 𝑡

𝜕2𝜎12
𝜕𝑡2

= 2𝐶1212
𝜕2𝜀12
𝜕𝑡2

, (24)

и подставляя (23) в (24) получим

𝜕2𝜎12
𝜕𝑡2

=
𝐶1212

𝜌

(︂
𝜕2𝜎11
𝜕𝑥𝜕𝑦

+
𝜕2𝜎21
𝜕𝑥2

+
𝜕2𝜎12
𝜕𝑦2

+
𝜕2𝜎22
𝜕𝑥𝜕𝑦

)︂
. (25)

Таким образом, мы получили систему трех уравнений (18), (19) и (25) относитель-
но компонент тензора напряжений и температуры. Теперь осталось присоединить к
этой системе, уравнение притока тепла выраженное относительно температуры и
напряжений.

Для чего, соотношение Дюамеля-Неймана записываем в следующей форме [1]

𝜀𝑖𝑗 = 𝑆𝑖𝑗𝑘𝑙𝜎𝑘𝑙 + 𝛽𝑖𝑗(𝑇 − 𝑇0)𝛿𝑖𝑗, (26)

и, оно в двумерном случае имеет вид

𝜀11 = 𝑆1111𝜎11 + 𝑆1122𝜎22 + 𝛽11(𝑇 − 𝑇0), (27)

𝜀22 = 𝑆2211𝜎11 + 𝑆2222𝜎22 + 𝛽22(𝑇 − 𝑇0), (28)

𝜀12 = 2𝑆1212𝜎12. (29)

Подставляя (27) и (28) в (9) получим искомое уравнение притока тепла

𝜆11
𝜕2𝑇

𝜕𝑥2
+ 𝜆22

𝜕2𝑇

𝜕𝑦2
− (𝑐𝜀 + 𝑇 (𝛽2

11 + 𝛽2
22))

𝜕𝑇

𝜕𝑡
−

−𝑇
(︂
(𝛽11𝑆1111 + 𝛽22𝑆2211)

𝜕𝜎11
𝜕𝑡

+ (𝛽11𝑆1122 + 𝛽22𝑆2222)
𝜕𝜎22
𝜕𝑡

)︂
= 0.

(30)

Таким образом мы получили уравнения⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕2𝜎11
𝜕𝑡2

=
𝐶1111

𝜌

𝜕2𝜎11
𝜕𝑥2

+
𝐶1111 + 𝐶1122

𝜌

𝜕2𝜎12
𝜕𝑥𝜕𝑦

+
𝐶1122

𝜌

𝜕2𝜎22
𝜕𝑦2

− 𝛽11
𝜕2𝑇

𝜕𝑡2
,

𝜕2𝜎22
𝜕𝑡2

=
𝐶2211

𝜌

𝜕2𝜎11
𝜕𝑥2

+
𝐶2211 + 𝐶2222

𝜌

𝜕2𝜎21
𝜕𝑥𝜕𝑦

+
𝐶2222

𝜌

𝜕2𝜎22
𝜕𝑦2

− 𝛽22
𝜕2𝑇

𝜕𝑡2
,

𝜕2𝜎12
𝜕𝑡2

=
𝐶1212

𝜌

(︂
𝜕2𝜎11
𝜕𝑥𝜕𝑦

+
𝜕2𝜎21
𝜕𝑥2

+
𝜕2𝜎12
𝜕𝑦2

+
𝜕2𝜎22
𝜕𝑥𝜕𝑦

)︂
,

𝜆11
𝜕2𝑇

𝜕𝑥2
+ 𝜆22

𝜕2𝑇

𝜕𝑦2
− (𝑐𝜀 + 𝑇 (𝛽2

11 + 𝛽2
22))

𝜕𝑇

𝜕𝑡
−

−𝑇
(︂
(𝛽11𝑆1111 + 𝛽22𝑆2211)

𝜕𝜎11
𝜕𝑡

+ (𝛽11𝑆1122 + 𝛽22𝑆2222)
𝜕𝜎22
𝜕𝑡

)︂
= 0.

(31)

с начальными (10) и граничными (11) условиями которые состовляют связанную
динамическую задачу плоской термоупругости в напряжениях для анизотропных
тел.
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3 Конечно-разностные методы решения связанных задач
термоупругости
Для численного решения связанной задачи плоской термоупругости конечно-

разностным методом могут быть построены явные или неявные схемы. Заменяя в
уравнениях (31) производные явными конечно-разностными соотношениями, полу-
чим

𝜎𝑖,𝑗,𝑘+1
11 − 2𝜎𝑖,𝑗,𝑘

11 + 𝜎𝑖,𝑗,𝑘−1
11

𝜏 2
=

=
𝐶1111

𝜌

𝜎𝑖+1,𝑗,𝑘
11 − 2𝜎𝑖,𝑗,𝑘

11 + 𝜎𝑖−1,𝑗,𝑘
11

ℎ21
+
𝐶1122

𝜌

𝜎𝑖,𝑗+1,𝑘
22 − 2𝜎𝑖,𝑗,𝑘

22 + 𝜎𝑖,𝑗−1,𝑘
22

ℎ22
+

+
𝐶1111 + 𝐶1122

𝜌

𝜎𝑖+1,𝑗+1,𝑘
12 − 𝜎𝑖+1,𝑗−1,𝑘

12 − 𝜎𝑖−1,𝑗+1,𝑘
12 + 𝜎𝑖−1,𝑗−1,𝑘

12

4ℎ21ℎ
2
2

−

−𝛽11
𝑇 𝑖,𝑗,𝑘+1 − 2𝑇 𝑖,𝑗,𝑘 + 𝑇 𝑖,𝑗,𝑘−1

𝜏 2
,

(32)

𝜎𝑖,𝑗,𝑘+1
22 − 2𝜎𝑖,𝑗,𝑘

22 + 𝜎𝑖,𝑗,𝑘−1
22

𝜏 2
=
𝐶2222

𝜌

𝜎𝑖,𝑗+1,𝑘
22 − 2𝜎𝑖,𝑗,𝑘

22 + 𝜎𝑖,𝑗−1,𝑘
22

ℎ22
+

+
𝐶2211

𝜌

𝜎𝑖+1,𝑗,𝑘
11 − 2𝜎𝑖,𝑗,𝑘

11 + 𝜎𝑖−1,𝑗,𝑘
11

ℎ21
+

+
𝐶2211 + 𝐶2222

𝜌

𝜎𝑖+1,𝑗+1,𝑘
12 − 𝜎𝑖+1,𝑗−1,𝑘

12 − 𝜎𝑖−1,𝑗+1,𝑘
12 + 𝜎𝑖−1,𝑗−1,𝑘

12

4ℎ21ℎ
2
2

−

−𝛽22
𝑇 𝑖,𝑗,𝑘+1 − 2𝑇 𝑖,𝑗,𝑘 + 𝑇 𝑖,𝑗,𝑘−1

𝜏 2
,

(33)

𝜎𝑖,𝑗,𝑘+1
12 − 2𝜎𝑖,𝑗,𝑘

12 + 𝜎𝑖,𝑗,𝑘−1
12

𝜏 2
=
𝐶1212

𝜌
×

×

(︃
𝜎𝑖+1,𝑗+1,𝑘
11 − 𝜎𝑖+1,𝑗−1,𝑘

11 − 𝜎𝑖−1,𝑗+1,𝑘
11 + 𝜎𝑖−1,𝑗−1,𝑘

11

4ℎ21ℎ
2
2

+
𝜎𝑖+1,𝑗,𝑘
21 − 2𝜎𝑖,𝑗,𝑘

21 + 𝜎𝑖−1,𝑗,𝑘
21

ℎ21
+

+
𝜎𝑖,𝑗+1,𝑘
12 − 2𝜎𝑖,𝑗,𝑘

12 + 𝜎𝑖,𝑗−1,𝑘
12

ℎ22
+
𝜎𝑖+1,𝑗+1,𝑘
22 − 𝜎𝑖+1,𝑗−1,𝑘

22 − 𝜎𝑖−1,𝑗+1,𝑘
22 + 𝜎𝑖−1,𝑗−1,𝑘

22

4ℎ21ℎ
2
2

)︃
,

(34)

𝜆11
𝑇 𝑖+1,𝑗,𝑘 − 2𝑇 𝑖,𝑗,𝑘 + 𝑇 𝑖−1,𝑗,𝑘

ℎ21
+ 𝜆22

𝑇 𝑖,𝑗+1,𝑘 − 2𝑇 𝑖,𝑗,𝑘 + 𝑇 𝑖,𝑗−1,𝑘

ℎ22
−

−(𝑐𝜀 + 𝑇 (𝛽2
11 + 𝛽2

22))
𝑇 𝑖,𝑗,𝑘+1 − 𝑇 𝑖,𝑗,𝑘

𝜏
−−𝑇 𝑖,𝑗,𝑘×(︃

(𝛽11𝑆1111 + 𝛽22𝑆2211)
𝜎𝑖,𝑗,𝑘
11 − 𝜎

𝑖,𝑗,𝑘−1
11

𝜏
+ (𝛽11𝑆1122 + 𝛽22𝑆2222)

𝜎𝑖,𝑗,𝑘
22 − 𝜎

𝑖,𝑗,𝑘−1
22

𝜏

)︃
= 0.

(35)

Решив разностные уравнения (32)-(35) относительно 𝜎𝑖,𝑗,𝑘+1
11 , 𝜎𝑖,𝑗,𝑘+1

22 , 𝜎𝑖,𝑗,𝑘+1
12 и

𝑇 𝑖,𝑗,𝑘+1 соответственно, получим
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𝜎𝑖,𝑗,𝑘+1
11 = 𝜏 2

(︃
𝐶1111

𝜌

𝜎𝑖+1,𝑗,𝑘
11 − 2𝜎𝑖,𝑗,𝑘

11 + 𝜎𝑖−1,𝑗,𝑘
11

ℎ21
+

+
𝐶1111 + 𝐶1122

𝜌

𝜎𝑖+1,𝑗+1,𝑘
12 − 𝜎𝑖+1,𝑗−1,𝑘

12 − 𝜎𝑖−1,𝑗+1,𝑘
12 + 𝜎𝑖−1,𝑗−1,𝑘

12

4ℎ21ℎ
2
2

+

+
𝐶1122

𝜌

𝜎𝑖,𝑗+1,𝑘
22 − 2𝜎𝑖,𝑗,𝑘

22 + 𝜎𝑖,𝑗−1,𝑘
22

ℎ22
− 𝛽11

𝑇 𝑖,𝑗,𝑘+1 − 2𝑇 𝑖,𝑗,𝑘 + 𝑇 𝑖,𝑗,𝑘−1

𝜏 2

)︃
+

+2𝜎𝑖,𝑗,𝑘
11 − 𝜎

𝑖,𝑗,𝑘−1
11 ,

(36)

𝜎𝑖,𝑗,𝑘+1
22 = 𝜏 2

(︃
𝐶2222

𝜌

𝜎𝑖,𝑗+1,𝑘
22 − 2𝜎𝑖,𝑗,𝑘

22 + 𝜎𝑖,𝑗−1,𝑘
22

ℎ22
+

+
𝐶2211 + 𝐶2222

𝜌

𝜎𝑖+1,𝑗+1,𝑘
12 − 𝜎𝑖+1,𝑗−1,𝑘

12 − 𝜎𝑖−1,𝑗+1,𝑘
12 + 𝜎𝑖−1,𝑗−1,𝑘

12

4ℎ21ℎ
2
2

+

+
𝐶2211

𝜌

𝜎𝑖+1,𝑗,𝑘
11 − 2𝜎𝑖,𝑗,𝑘

11 + 𝜎𝑖−1,𝑗,𝑘
11

ℎ21
− 𝛽22

𝑇 𝑖,𝑗,𝑘+1 − 2𝑇 𝑖,𝑗,𝑘 + 𝑇 𝑖,𝑗,𝑘−1

𝜏 2

)︃
+

+2𝜎𝑖,𝑗,𝑘
22 − 𝜎

𝑖,𝑗,𝑘−1
22 ,

(37)

𝜎𝑖,𝑗,𝑘+1
12 =

𝜏 2𝐶1212

𝜌

(︃
𝜎𝑖+1,𝑗+1,𝑘
11 − 𝜎𝑖+1,𝑗−1,𝑘

11 − 𝜎𝑖−1,𝑗+1,𝑘
11 + 𝜎𝑖−1,𝑗−1,𝑘

11

4ℎ21ℎ
2
2

+

+
𝜎𝑖+1,𝑗,𝑘
21 − 2𝜎𝑖,𝑗,𝑘

21 + 𝜎𝑖−1,𝑗,𝑘
21

ℎ21
+
𝜎𝑖,𝑗+1,𝑘
12 − 2𝜎𝑖,𝑗,𝑘

12 + 𝜎𝑖,𝑗−1,𝑘
12

ℎ22
+

+
𝜎𝑖+1,𝑗+1,𝑘
22 − 𝜎𝑖+1,𝑗−1,𝑘

22 − 𝜎𝑖−1,𝑗+1,𝑘
22 + 𝜎𝑖−1,𝑗−1,𝑘

22

4ℎ21ℎ
2
2

)︃
+ 2𝜎𝑖,𝑗,𝑘

12 − 𝜎
𝑖,𝑗,𝑘−1
12 ,

(38)

𝑇 𝑖,𝑗,𝑘+1 =
𝜏

𝑐𝜀 + 𝑇 (𝛽2
11 + 𝛽2

22)

(︂
𝜆11

𝑇 𝑖+1,𝑗,𝑘 − 2𝑇 𝑖,𝑗,𝑘 + 𝑇 𝑖−1,𝑗,𝑘

ℎ21
+

+𝜆22
𝑇 𝑖,𝑗+1,𝑘 − 2𝑇 𝑖,𝑗,𝑘 + 𝑇 𝑖,𝑗−1,𝑘

ℎ22
−

−𝑇 𝑖,𝑗,𝑘

(︃
(𝛽11𝑆1111 + 𝛽22𝑆2211)

𝜎𝑖,𝑗,𝑘
11 − 𝜎

𝑖,𝑗,𝑘−1
11

𝜏
+

+(𝛽11𝑆1122 + 𝛽22𝑆2222)
𝜎𝑖,𝑗,𝑘
22 − 𝜎

𝑖,𝑗,𝑘−1
22

𝜏

)︃)︃
+ 𝑇 𝑖,𝑗,𝑘.

(39)

Разностные уравнения (36)-(39) с использованием начальных и краевых условий
позволяют вычислить значения искомых напряжений и температуры на (𝑘+1) слое
по времени.
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В приграничных узловых точках уравнение (38) принимает следующий вид при
𝑖 = 1, 𝑗 ̸= 1, 𝑗 ̸= 𝑛− 1

𝜎𝑖,𝑗,𝑘+1
12 =

𝜏 2𝐶1212

𝜌

(︃
𝜎𝑖+1,𝑗+1,𝑘
11 − 𝜎𝑖+1,𝑗−1,𝑘

11 − 𝜎𝑖−1,𝑗+1,𝑘
11 + 𝜎𝑖−1,𝑗−1,𝑘

11

4ℎ21ℎ
2
2

+

+
𝜎𝑖+1,𝑗,𝑘
21 − 2𝜎𝑖,𝑗,𝑘

21 + 𝜎𝑖−1,𝑗,𝑘
21

ℎ21
+
𝜎𝑖,𝑗+1,𝑘
12 − 2𝜎𝑖,𝑗,𝑘

12 + 𝜎𝑖,𝑗−1,𝑘
12

ℎ22
+

+
𝜎𝑖+1,𝑗+1,𝑘
22 − 𝜎𝑖+1,𝑗−1,𝑘

22 − 𝜎𝑖,𝑗+1,𝑘
22 + 𝜎𝑖,𝑗−1,𝑘

22

2ℎ21ℎ
2
2

)︃
+ 2𝜎𝑖,𝑗,𝑘

12 − 𝜎
𝑖,𝑗,𝑘−1
12 ,

при 𝑖 = 1, 𝑗 = 1

𝜎𝑖,𝑗,𝑘+1
12 =

𝜏 2𝐶1212

𝜌

(︃
𝜎𝑖+1,𝑗+1,𝑘
11 − 𝜎𝑖+1,𝑗,𝑘

11 − 𝜎𝑖−1,𝑗+1,𝑘
11 + 𝜎𝑖−1,𝑗,𝑘

11

2ℎ21ℎ
2
2

+

+
𝜎𝑖+1,𝑗,𝑘
21 − 2𝜎𝑖,𝑗,𝑘

21 + 𝜎𝑖−1,𝑗,𝑘
21

ℎ21
+
𝜎𝑖,𝑗+1,𝑘
12 − 2𝜎𝑖,𝑗,𝑘

12 + 𝜎𝑖,𝑗−1,𝑘
12

ℎ22
+

+
𝜎𝑖+1,𝑗+1,𝑘
22 − 𝜎𝑖+1,𝑗−1,𝑘

22 − 𝜎𝑖,𝑗+1,𝑘
22 + 𝜎𝑖,𝑗−1,𝑘

22

2ℎ21ℎ
2
2

)︃
+ 2𝜎𝑖,𝑗,𝑘

12 − 𝜎
𝑖,𝑗,𝑘−1
12 ,

при 𝑖 = 1, 𝑗 = 𝑛− 1

𝜎𝑖,𝑗,𝑘+1
12 =

𝜏 2𝐶1212

𝜌

(︃
𝜎𝑖+1,𝑗,𝑘
11 − 𝜎𝑖+1,𝑗−1,𝑘

11 − 𝜎𝑖−1,𝑗,𝑘
11 + 𝜎𝑖−1,𝑗−1,𝑘

11

2ℎ21ℎ
2
2

+

+
𝜎𝑖+1,𝑗,𝑘
21 − 2𝜎𝑖,𝑗,𝑘

21 + 𝜎𝑖−1,𝑗,𝑘
21

ℎ21
+
𝜎𝑖,𝑗+1,𝑘
12 − 2𝜎𝑖,𝑗,𝑘

12 + 𝜎𝑖,𝑗−1,𝑘
12

ℎ22
+

+
𝜎𝑖+1,𝑗+1,𝑘
22 − 𝜎𝑖+1,𝑗−1,𝑘

22 − 𝜎𝑖,𝑗+1,𝑘
22 + 𝜎𝑖,𝑗−1,𝑘

22

2ℎ21ℎ
2
2

)︃
+ 2𝜎𝑖,𝑗,𝑘

12 − 𝜎
𝑖,𝑗,𝑘−1
12 ,

при 𝑖 = 𝑛− 1, 𝑗 ̸= 1, 𝑗 ̸= 𝑛− 1

𝜎𝑖,𝑗,𝑘+1
12 =

𝜏 2𝐶1212

𝜌

(︃
𝜎𝑖+1,𝑗+1,𝑘
11 − 𝜎𝑖+1,𝑗−1,𝑘

11 − 𝜎𝑖−1,𝑗+1,𝑘
11 + 𝜎𝑖−1,𝑗−1,𝑘

11

4ℎ21ℎ
2
2

+

+
𝜎𝑖+1,𝑗,𝑘
21 − 2𝜎𝑖,𝑗,𝑘

21 + 𝜎𝑖−1,𝑗,𝑘
21

ℎ21
+
𝜎𝑖,𝑗+1,𝑘
12 − 2𝜎𝑖,𝑗,𝑘

12 + 𝜎𝑖,𝑗−1,𝑘
12

ℎ22
+

+
𝜎𝑖,𝑗+1,𝑘
22 − 𝜎𝑖,𝑗−1,𝑘

22 − 𝜎𝑖−1,𝑗+1,𝑘
22 + 𝜎𝑖−1,𝑗−1,𝑘

22

2ℎ21ℎ
2
2

)︃
+ 2𝜎𝑖,𝑗,𝑘

12 − 𝜎
𝑖,𝑗,𝑘−1
12 ,

при 𝑖 = 𝑛− 1, 𝑗 = 1

𝜎𝑖,𝑗,𝑘+1
12 =

𝜏 2𝐶1212

𝜌

(︃
𝜎𝑖+1,𝑗+1,𝑘
11 − 𝜎𝑖+1,𝑗,𝑘

11 − 𝜎𝑖−1,𝑗+1,𝑘
11 + 𝜎𝑖,𝑗,𝑘

11

2ℎ21ℎ
2
2

+

+
𝜎𝑖+1,𝑗,𝑘
21 − 2𝜎𝑖,𝑗,𝑘

21 + 𝜎𝑖−1,𝑗,𝑘
21

ℎ21
+
𝜎𝑖,𝑗+1,𝑘
12 − 2𝜎𝑖,𝑗,𝑘

12 + 𝜎𝑖,𝑗−1,𝑘
12

ℎ22
+

+
𝜎𝑖,𝑗+1,𝑘
22 − 𝜎𝑖,𝑗−1,𝑘

22 − 𝜎𝑖−1,𝑗+1,𝑘
22 + 𝜎𝑖−1,𝑗−1,𝑘

22

2ℎ21ℎ
2
2

)︃
+ 2𝜎𝑖,𝑗,𝑘

12 − 𝜎
𝑖,𝑗,𝑘−1
12 ,
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при 𝑖 = 𝑛− 1, 𝑗 = 𝑛− 1

𝜎𝑖,𝑗,𝑘+1
12 =

𝜏 2𝐶1212

𝜌

(︃
𝜎𝑖+1,𝑗,𝑘
11 − 𝜎𝑖+1,𝑗−1,𝑘

11 − 𝜎𝑖−1,𝑗,𝑘
11 + 𝜎𝑖−1,𝑗−1,𝑘

11

2ℎ21ℎ
2
2

+

+
𝜎𝑖+1,𝑗,𝑘
21 − 2𝜎𝑖,𝑗,𝑘

21 + 𝜎𝑖−1,𝑗,𝑘
21

ℎ21
+
𝜎𝑖,𝑗+1,𝑘
12 − 2𝜎𝑖,𝑗,𝑘

12 + 𝜎𝑖,𝑗−1,𝑘
12

ℎ22
+

+
𝜎𝑖,𝑗+1,𝑘
22 − 𝜎𝑖,𝑗−1,𝑘

22 − 𝜎𝑖−1,𝑗+1,𝑘
22 + 𝜎𝑖−1,𝑗−1,𝑘

22

2ℎ21ℎ
2
2

)︃
+ 2𝜎𝑖,𝑗,𝑘

12 − 𝜎
𝑖,𝑗,𝑘−1
12 ,

при 𝑖 ̸= 1, 𝑖 ̸= 𝑛− 1, 𝑗 = 1

𝜎𝑖,𝑗,𝑘+1
12 =

𝜏 2𝐶1212

𝜌

(︃
𝜎𝑖+1,𝑗+1,𝑘
11 − 𝜎𝑖+1,𝑗,𝑘

11 − 𝜎𝑖−1,𝑗+1,𝑘
11 + 𝜎𝑖−1,𝑗,𝑘

11

2ℎ21ℎ
2
2

+

+
𝜎𝑖+1,𝑗,𝑘
21 − 2𝜎𝑖,𝑗,𝑘

21 + 𝜎𝑖−1,𝑗,𝑘
21

ℎ21
+
𝜎𝑖,𝑗+1,𝑘
12 − 2𝜎𝑖,𝑗,𝑘

12 + 𝜎𝑖,𝑗−1,𝑘
12

ℎ22
+

+
𝜎𝑖+1,𝑗+1,𝑘
22 − 𝜎𝑖+1,𝑗−1,𝑘

22 − 𝜎𝑖−1,𝑗+1,𝑘
22 + 𝜎𝑖−1,𝑗−1,𝑘

22

4ℎ21ℎ
2
2

)︃
+ 2𝜎𝑖,𝑗,𝑘

12 − 𝜎
𝑖,𝑗,𝑘−1
12 ,

при 𝑖 ̸= 1, 𝑖 ̸= 𝑛− 1, 𝑗 = 𝑛− 1

𝜎𝑖,𝑗,𝑘+1
12 =

𝜏 2𝐶1212

𝜌

(︃
𝜎𝑖+1,𝑗,𝑘
11 − 𝜎𝑖+1,𝑗−1,𝑘

11 − 𝜎𝑖−1,𝑗,𝑘
11 + 𝜎𝑖−1,𝑗−1,𝑘

11

2ℎ21ℎ
2
2

+

+
𝜎𝑖+1,𝑗,𝑘
21 − 2𝜎𝑖,𝑗,𝑘

21 + 𝜎𝑖−1,𝑗,𝑘
21

ℎ21
+
𝜎𝑖,𝑗+1,𝑘
12 − 2𝜎𝑖,𝑗,𝑘

12 + 𝜎𝑖,𝑗−1,𝑘
12

ℎ22
+

+
𝜎𝑖+1,𝑗+1,𝑘
22 − 𝜎𝑖+1,𝑗−1,𝑘

22 − 𝜎𝑖−1,𝑗+1,𝑘
22 + 𝜎𝑖−1,𝑗−1,𝑘

22

4ℎ21ℎ
2
2

)︃
+ 2𝜎𝑖,𝑗,𝑘

12 − 𝜎
𝑖,𝑗,𝑘−1
12 .

Известно, что устойчивость явных конечно-разностные схем требует определен-
ное ограничение на размер шага по времени аналогично неравенствам Фридрихса-
Куранта.

Далее построим неявные конечно-разностные схемы без вышеназванных ограни-
чений для рассматриваемой краевой задачи

𝜎𝑖,𝑗,𝑘+1
11 − 2𝜎𝑖,𝑗,𝑘

11 + 𝜎𝑖,𝑗,𝑘−1
11

𝜏 2
=
𝐶1111

𝜌

𝜎𝑖+1,𝑗,𝑘+1
11 − 2𝜎𝑖,𝑗,𝑘+1

11 + 𝜎𝑖−1,𝑗,𝑘+1
11

ℎ21
+

+
𝐶1122

𝜌

𝜎𝑖,𝑗+1,𝑘
22 − 2𝜎𝑖,𝑗,𝑘

22 + 𝜎𝑖,𝑗−1,𝑘
22

ℎ22
+

+
𝐶1111 + 𝐶1122

𝜌

𝜎𝑖+1,𝑗+1,𝑘
12 − 𝜎𝑖+1,𝑗−1,𝑘

12 − 𝜎𝑖−1,𝑗+1,𝑘
12 + 𝜎𝑖−1,𝑗−1,𝑘

12

4ℎ21ℎ
2
2

−

−𝛽11
𝑇 𝑖,𝑗,𝑘+1 − 2𝑇 𝑖,𝑗,𝑘 + 𝑇 𝑖,𝑗,𝑘−1

𝜏 2
,

(40)
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𝜎𝑖,𝑗,𝑘+1
22 − 2𝜎𝑖,𝑗,𝑘

22 + 𝜎𝑖,𝑗,𝑘−1
22

𝜏 2
=
𝐶2222

𝜌

𝜎𝑖,𝑗+1,𝑘+1
22 − 2𝜎𝑖,𝑗,𝑘+1

22 + 𝜎𝑖,𝑗−1,𝑘+1
22

ℎ22
+

+
𝐶2211

𝜌

𝜎𝑖+1,𝑗,𝑘
11 − 2𝜎𝑖,𝑗,𝑘

11 + 𝜎𝑖−1,𝑗,𝑘
11

ℎ21
+

+
𝐶2211 + 𝐶2222

𝜌

𝜎𝑖+1,𝑗+1,𝑘
12 − 𝜎𝑖+1,𝑗−1,𝑘

12 − 𝜎𝑖−1,𝑗+1,𝑘
12 + 𝜎𝑖−1,𝑗−1,𝑘

12

4ℎ21ℎ
2
2

−

−𝛽22
𝑇 𝑖,𝑗,𝑘+1 − 2𝑇 𝑖,𝑗,𝑘 + 𝑇 𝑖,𝑗,𝑘−1

𝜏 2
,

(41)

𝜎𝑖,𝑗,𝑘+1
12 − 2𝜎𝑖,𝑗,𝑘

12 + 𝜎𝑖,𝑗,𝑘−1
12

𝜏 2
=
𝐶1212

𝜌

(︃
𝜎𝑖+1,𝑗+1,𝑘
11 − 𝜎𝑖+1,𝑗−1,𝑘

11 − 𝜎𝑖−1,𝑗+1,𝑘
11 + 𝜎𝑖−1,𝑗−1,𝑘

11

4ℎ21ℎ
2
2

+

+
𝜎𝑖+1,𝑗,𝑘+1
21 − 2𝜎𝑖,𝑗,𝑘+1

21 + 𝜎𝑖−1,𝑗,𝑘+1
21

ℎ21
+
𝜎𝑖,𝑗+1,𝑘
12 − 2𝜎𝑖,𝑗,𝑘

12 + 𝜎𝑖,𝑗−1,𝑘
12

ℎ22
+

+
𝜎𝑖+1,𝑗+1,𝑘
22 − 𝜎𝑖+1,𝑗−1,𝑘

22 − 𝜎𝑖−1,𝑗+1,𝑘
22 + 𝜎𝑖−1,𝑗−1,𝑘

22

4ℎ21ℎ
2
2

)︃
,

(42)

𝜆11
𝑇 𝑖+1,𝑗,𝑘+1 − 2𝑇 𝑖,𝑗,𝑘+1 + 𝑇 𝑖−1,𝑗,𝑘+1

ℎ21
+ 𝜆22

𝑇 𝑖,𝑗+1,𝑘 − 2𝑇 𝑖,𝑗,𝑘 + 𝑇 𝑖,𝑗−1,𝑘

ℎ22
−

−(𝑐𝜀 + 𝑇 𝑖,𝑗,𝑘(𝛽2
11 + 𝛽2

22))
𝑇 𝑖,𝑗,𝑘+1 − 𝑇 𝑖,𝑗,𝑘

𝜏
− 𝑇 𝑖,𝑗,𝑘×

×

(︃
(𝛽11𝑆1111 + 𝛽22𝑆2211)

𝜎𝑖,𝑗,𝑘
11 − 𝜎

𝑖,𝑗,𝑘−1
11

𝜏
+ (𝛽11𝑆1122 + 𝛽22𝑆2222)

𝜎𝑖,𝑗,𝑘
22 − 𝜎

𝑖,𝑗,𝑘−1
22

𝜏

)︃
= 0.

(43)
Неявные разностные уравнения (42-45) могут быть приведены к системе урав-

нений с трёх диагональной матрицей решаемых методом прогонки: уравнение (40)
имеет вид

𝑎𝑖𝜎
𝑖+1,𝑗,𝑘+1
11 + 𝑏𝑖𝜎

𝑖,𝑗,𝑘+1
11 + 𝑐𝑖𝜎

𝑖−1,𝑗,𝑘+1
11 = 𝑓𝑖. (44)

где

𝑎𝑖 =
𝐶1111

𝜌ℎ21
, 𝑏𝑖 = −

2𝐶1111

𝜌ℎ21
− 1

𝜏 2
, 𝑐𝑖 =

𝐶1111

𝜌ℎ21
,

𝑓𝑖 = 𝛽11
𝑇 𝑖,𝑗,𝑘+1 − 2𝑇 𝑖,𝑗,𝑘 + 𝑇 𝑖,𝑗,𝑘−1

𝜏 2
− 𝐶1122

𝜌

𝜎𝑖,𝑗+1,𝑘
22 − 2𝜎𝑖,𝑗,𝑘

22 + 𝜎𝑖,𝑗−1,𝑘
22

ℎ22
−

−𝐶1111 + 𝐶1122

𝜌

𝜎𝑖+1,𝑗+1,𝑘
12 − 𝜎𝑖+1,𝑗−1,𝑘

12 − 𝜎𝑖−1,𝑗+1,𝑘
12 + 𝜎𝑖−1,𝑗−1,𝑘

12

4ℎ21ℎ
2
2

− 2𝜎𝑖,𝑗,𝑘
11 − 𝜎

𝑖,𝑗,𝑘−1
11

𝜏 2
.

Аналогичным образом, уравнения (41) и (42) могут быть приведены к трёхдиа-
гональному виду, для уранения притока тепла имеем следующее

𝑎4𝑖𝑇
𝑖+1,𝑗,𝑘+1 + 𝑏4𝑖𝑇

𝑖,𝑗,𝑘+1 + 𝑐4𝑖𝑇
𝑖−1,𝑗,𝑘+1 = 𝑓4𝑖. (45)
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где

𝑎4𝑖 =
𝜆11
ℎ21
, 𝑏4𝑖 = −

2𝜆11
ℎ21
− 𝑐𝜀 + 𝑇 𝑖,𝑗,𝑘(𝛽2

11 + 𝛽2
22)

𝜏
, 𝑐4𝑖 =

𝜆11
ℎ21
,

𝑓4𝑖 = 𝑇 𝑖,𝑗,𝑘

(︃
(𝛽11𝑆1111 + 𝛽22𝑆2211)

𝜎𝑖,𝑗,𝑘
11 − 𝜎

𝑖,𝑗,𝑘−1
11

𝜏
+

+(𝛽11𝑆1122 + 𝛽22𝑆2222)
𝜎𝑖,𝑗,𝑘
22 − 𝜎

𝑖,𝑗,𝑘−1
22

𝜏

)︃
−

−𝜆22
𝑇 𝑖,𝑗+1,𝑘 − 2𝑇 𝑖,𝑗,𝑘 + 𝑇 𝑖,𝑗−1,𝑘

ℎ22
− (𝑐𝜀 + 𝑇 (𝛽2

11 + 𝛽2
22))

𝑇 𝑖,𝑗,𝑘

𝜏
.

Определив значения искомых функций 𝜎𝑖𝑗(𝑥, 𝑦, 𝑧, 𝑡)на начальных слоях 𝑘 = 0 и
𝑘 = 1 и 𝑇 (𝑥, 𝑦, 𝑧, 𝑡) на слое 𝑘 = 0 из начальных условий, далее пользуясь гранич-
ными условиями, разностные уравнения (44)-(45) решаются методом прогонки или
итерационным методом.

4 Численные результаты
Рассмотрим связанную термоупругую задачу о свободной пластине находящейся

под действием температурного поле куполообразной формы заданный в начальный
момент времени. Требуется исследовать распределение температурных напряжений
по времени в пластине. При этом начальные и краевые условия для рассаматривае-
мой задачи имеют вид: начальные условия

𝜎11 (𝑥, 𝑦, 𝑡)|𝑡=0 = 0, 𝜎22 (𝑥, 𝑦, 𝑡)|𝑡=0 = 0, 𝜎12 (𝑥, 𝑦, 𝑡)|𝑡=0 = 0,

𝜕𝜎11
𝜕𝑡

⃒⃒⃒⃒
𝑡=0

= 0,
𝜕𝜎22
𝜕𝑡

⃒⃒⃒⃒
𝑡=0

= 0,
𝜕𝜎12
𝜕𝑡

⃒⃒⃒⃒
𝑡=0

= 0,
𝜕𝑇

𝜕𝑡

⃒⃒⃒⃒
𝑡=0

= 0,

𝑇 (𝑥, 𝑦, 𝑡)|𝑡=0 = 𝑇0 · sin(𝜋𝑥) sin(𝜋𝑦),

граничные условия

𝜎11 (𝑥, 𝑦, 𝑡)|𝑥=Γ = 0, 𝜎22 (𝑥, 𝑦, 𝑡)|𝑥=Γ = 0, 𝜎12 (𝑥, 𝑦, 𝑡)|𝑥=Γ = 0,

𝑇 (𝑥, 𝑦, 𝑡)|𝑥=Γ = 0, 𝑇 (𝑥, 𝑦, 𝑡)|𝑥=Γ = 0.

константы

𝐶1111 = 0.78, 𝐶1122 = 0.44, 𝐶2222 = 0.3, 𝐶1212 = 0.5,

𝜆11 = 0.6, 𝜆22 = 0.3, 𝛽11 = 0.015,

𝛽22 = 0.018, 𝜌 = 0.86, 𝑐𝜀 = 3.4, 𝑇0 = 20, ℎ1 = 0.1, ℎ2 = 0.1, 𝜏 = 0.01.

Таблица 1. Значения напряжений 𝜎11

y=0.5, t=0.08 x=0 x=0.1 x=0.2 x=0.3 x=0.4 x=0.5
Явная схема 0 0.0192 0.0365 0.0503 0.0592 0.0623

Неявная схема 0 0.0188 0.0357 0.0492 0.0578 0.0608
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Таблица 2. Значения напряжений 𝜎22

y=0.5, t=0.08 x=0 x=0.1 x=0.2 x=0.3 x=0.4 x=0.5
Явная схема 0 0.0233 0.0443 0.0610 0.0718 0.0755

Неявная схема 0 0.0228 0.0435 0.0599 0.0704 0.0741

Таблица 3. Значения температуры 𝑇

y=0.5, t=0.08 x=0 x=0.1 x=0.2 x=0.3 x=0.4 x=0.5
Явная схема 0 4.874 9.268 12.753 14.988 15.758

Неявная схема 0 4.896 9.310 12.812 15.060 15.834

В таблицах 1 и 2 приведены численные значения напряжений полученные дву-
мя методами, как видно из численных результатов, на основе температурного поля
появляются напряжения. Температурное поле задано купалообразно, симметрично
по осям координат. Так как рассматриваемая задача для анизотропных тел, числен-
ные результаты напряжений в середине рассматриваемой области различные, что
показывает влияние анизотропии.

В таблице 3 приведены численные значения температуры полученные двумя ме-
тодами. Численные результаты, полученные на основе явных и неявных конечно-
разностных схем достаточно близки, что доказывает справедливость предложенных
математических и численных моделей.

5 Заключение
Сформулирована связанная задача плоской термоупругости в напряжениях. При

этом, краевая задача состоит из четырех уравнений вкючая уравнений притока теп-
ла. В предложенной краевой задаче, в отличие от известных связанных задач, неиз-
вестными являются три компоненты тензора напряжений и температура. Разностные
уравнения составлены конечно-разностным методом в виде явных и неявных схем.

Численно решена плоская задача о термических напряжениях свободной пласти-
ны под действием температурных воздействие куполообразной формы. Сравнением
результатов явных и неявных схем показана достоверность полученных результатов
и справедливость предложенной связанной краевой задачи термоупругости в напря-
жениях.

Литeратура
[1] Youssef H.M., Al-Felali A.S. Generalized thermoelasticity problem of material subjected to

thermal loading due to laser pulse // Applied Mathematics. – 2012. – Vol. 3. – P. 142-146.
[2] Новацкий В. Динамические задачи термоупругости. – М.: Мир, 1970. – 256 с.
[3] Победря Б.Е. Численные методы в теории упругости и пластичности. – М.: МГУ, 1996.

– 343 с.
[4] Коновалов А.Н. Решение задач термоупругости в напряжениях. – Новосибирск, 1979.

– 92 с.
[5] Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. – М.: Наука,

1978. – 592 с.



Numerical simulation of the coupled dynamic problem . . . 59

[6] Khaldjigitov A.A., Kalandarov A.A., Djumayozov U.Z. Numerical modeling of coupled
problems of thermo-plasticity on non-uniform meshes // AIP Conference Proceedings. –
2022. – Vol. 2686, Issue 1. – Art. 020007.

[7] Kalandarov A.A., Khaldjigitov A.A., Atabayev K. Coupled plane problem of dynamic
thermal elasticity in stresses // AIP Conference Proceedings. – 2024. – (International
Conference: Mechanics, Earthquake Engineering, Machinery Building, Tashkent, May 27-29,
2024).

[8] Каландаров А.А., Джумаёзов У.З., Сагдуллаева Д.А. Численное моделирование термо-
упругопластического состояния изотропного параллелепипеда // Проблемы вычисли-
тельной и прикладной математики. – 2021. – №4(15). – C. 1-19.

[9] Халджигитов А.А., Каландаров А.А., Джумаёзов У.З. Численное моделирование свя-
занной задачи термоупругости в деформациях // Проблемы вычислительной и при-
кладной математики. – 2023. – № 6(53). – C. 114-122.

[10] Andrianov I., Topol H. Compatibility conditions: number of independent equations and
boundary conditions // Mechanics and Physics of Structured Media. – 2022. – P. 123-140.
doi: http://dx.doi.org/10.1016/b978-0-32-390543-5.00011-6.

[11] Abirov R.A., Khusanov B.E., Sagdullaeva D.A. Numerical modeling of the problem of
indentation of elastic and elastic-plastic massive bodies // IOP Conference Series: Materials
Science and Engineering. – 2020. – Vol. 971. – Art. 032017. doi: http://dx.doi.org/10.
1088/1757-899X/971/3/032017.

[12] Akhmedov A., Kholmanov N. Problems of the theory of elasticity in stresses // AIP
Conference Proceedings. – 2022. – Vol. 2637, Issue 1. – P. 1-10. doi: http://dx.doi.org/
10.1063/5.0119144.

[13] Borodachev N.M. Three-dimensional problem of the theory of elasticity in strains //
Strength of Materials. – 1995. – Vol. 27. – P. 296-299. doi: http://dx.doi.org/10.1007/
bf02208501.

[14] Borodachev N.M. About one approach in the solution of the 3D problem of elasticity in
stresses // International Journal of Applied Mechanics. – 1995. – Vol. 31, Issue 12. – P.
38-44.

[15] Borodachev N.M. An approach to solving the stress problem of elasticity // International
Applied Mechanics. – 2006. – Vol. 42, Issue 7. – P. 744-748. doi: http://dx.doi.org/10.
1007/s10778-006-0142-8.

[16] Georgievski D.V., Pobedrya B.E. On the number of independent compatibility equations in
the mechanics of a deformable solid // Journal of Applied Mathematics and Mechanics. –
2004. – Vol. 68, Issue 6. – P. 941-946.

UDC 519.63

NUMERICAL SIMULATION OF THE COUPLED DYNAMIC
PROBLEM OF THERMOELASTICITY IN STRESSES

Kalandarov A.A.
abrorshox@mail.ru

Gulistan State Pedagogical Institute,
49, st. Talabalar, Gulistan, 120100 Uzbekistan.

This article proposes a dynamic model of a coupled thermoelasticity problem under
stress. A coupled boundary value problem is formulated, consisting of three differen-



60 Kalandarov A.A.

tial equations for the stress and temperature tensor components, as well as a heat flux
equation with corresponding initial and boundary conditions. Explicit and implicit finite
difference equations are developed, solved by successive application of the sweep method
along the coordinate axes and recurrence relations, respectively. The coupled dynamic
thermoelasticity problem for an anisotropic rectangle under stress is solved numerically.
A comparison of the results of explicit and implicit difference schemes demonstrates the
reliability of the obtained numerical results and the validity of the proposed coupled dy-
namic boundary value problem of thermoelasticity under stress.

Keywords: thermoelasticity, stresses, deformations, explicit scheme, implicit scheme,
displacements.

Citation: Kalandarov A.A. 2025. Numerical simulation of the coupled dynamic problem
of thermoelasticity in stresses. Problems of Computational and Applied Mathematics.
6(70): 48-60.

DOI: https://doi.org/10.71310/pcam.6_70.2025.04



ПРОБЛЕМЫ ВЫЧИСЛИТЕЛЬНОЙ И
ПРИКЛАДНОЙ МАТЕМАТИКИ

№ 6(70) 2025
Журнал основан в 2015 году.

Издается 6 раз в год.
Учредитель:

Научно-исследовательский институт развития цифровых технологий и
искусственного интеллекта.

Главный редактор:
Равшанов Н.

Заместители главного редактора:
Арипов М.М., Шадиметов Х.М., Ахмедов Д.Д.

Ответственный секретарь:
Убайдуллаев М.Ш.

Редакционный совет:
Азамов А.А., Алоев Р.Д., Амиргалиев Е.Н. (Казахстан), Арушанов М.Л.,

Бурнашев В.Ф., Джумаёзов У.З., Загребина С.А. (Россия), Задорин А.И. (Россия),
Игнатьев Н.А., Ильин В.П. (Россия), Иманкулов Т.С. (Казахстан),

Исмагилов И.И. (Россия), Кабанихин С.И. (Россия), Карачик В.В. (Россия),
Курбонов Н.М., Маматов Н.С., Мирзаев Н.М., Мухамадиев А.Ш., Назирова Э.Ш.,

Нормуродов Ч.Б., Нуралиев Ф.М., Опанасенко В.Н. (Украина),
Расулмухамедов М.М., Расулов А.С., Садуллаева Ш.А.,

Старовойтов В.В. (Беларусь), Хаётов А.Р., Халджигитов А., Хамдамов Р.Х.,
Хужаев И.К., Хужаеров Б.Х., Чье Ен Ун (Россия), Шабозов М.Ш. (Таджикистан),

Dimov I. (Болгария), Li Y. (США), Mascagni M. (США), Min A. (Германия),
Singh D. (Южная Корея), Singh M. (Южная Корея).

Журнал зарегистрирован в Агентстве информации и массовых коммуникаций при
Администрации Президента Республики Узбекистан.

Регистрационное свидетельство №0856 от 5 августа 2015 года.
ISSN 2181-8460, eISSN 2181-046X

При перепечатке материалов ссылка на журнал обязательна.
За точность фактов и достоверность информации ответственность несут авторы.

Адрес редакции:
100125, г. Ташкент, м-в. Буз-2, 17А.

Тел.: +(998) 712-319-253, 712-319-249.
Э-почта: journals@airi.uz.

Веб-сайт: https://journals.airi.uz.
Дизайн и вёрстка:

Шарипов Х.Д.
Отпечатано в типографии НИИ РЦТИИ.

Подписано в печать 25.12.2025 г.
Формат 60х84 1/8. Заказ №8. Тираж 100 экз.



PROBLEMS OF COMPUTATIONAL AND
APPLIED MATHEMATICS

No. 6(70) 2025
The journal was established in 2015.

6 issues are published per year.

Founder:
Digital Technologies and Artificial Intelligence Development Research Institute.

Editor-in-Chief:
Ravshanov N.

Deputy Editors:
Aripov M.M., Shadimetov Kh.M., Akhmedov D.D.

Executive Secretary:
Ubaydullaev M.Sh.

Editorial Council:
Azamov A.A., Aloev R.D., Amirgaliev E.N. (Kazakhstan), Arushanov M.L.,

Burnashev V.F., Djumayozov U.Z., Zagrebina S.A. (Russia), Zadorin A.I. (Russia),
Ignatiev N.A., Ilyin V.P. (Russia), Imankulov T.S. (Kazakhstan), Ismagilov I.I. (Russia),

Kabanikhin S.I. (Russia), Karachik V.V. (Russia), Kurbonov N.M., Mamatov N.S.,
Mirzaev N.M.,Mukhamadiev A.Sh., Nazirova E.Sh., Normurodov Ch.B., Nuraliev F.M.,
Opanasenko V.N. (Ukraine), Rasulov A.S., Sadullaeva Sh.A., Starovoitov V.V. (Belarus),
Khayotov A.R., Khaldjigitov A., Khamdamov R.Kh., Khujaev I.K., Khujayorov B.Kh.,
Chye En Un (Russia), Shabozov M.Sh. (Tajikistan), Dimov I. (Bulgaria), Li Y. (USA),

Mascagni M. (USA), Min A. (Germany), Singh D. (South Korea), Singh M. (South
Korea).

The journal is registered by Agency of Information and Mass Communications under the
Administration of the President of the Republic of Uzbekistan.

The registration certificate No. 0856 of 5 August 2015.

ISSN 2181-8460, eISSN 2181-046X

At a reprint of materials the reference to the journal is obligatory.
Authors are responsible for the accuracy of the facts and reliability of the information.

Address:
100125, Tashkent, Buz-2, 17A.

Tel.: +(998) 712-319-253, 712-319-249.
Е-mail: journals@airi.uz.

Web-site: https://journals.airi.uz.

Layout design:
Sharipov Kh.D.

DTAIDRI printing office.
Signed for print 25.12.2025

Format 60х84 1/8. Order No. 8. Print run of 100 copies.



Содержание

Алимова Н.Б., Паровик Р.И.
Программный комплекс FrOsFHN для количественного и качественного ана-
лиза дробного осциллятора ФитцХью-Нагумо с переменной памятью . . . . 5

Эшкулов М.У., Хамдамов Р.Х.
Проектирование и анализ системы солнечного водоснабжения для много-
этажных жилых зданий на основе булева программирования . . . . . . . . . 18

Равшанов Н., Усмонов Л.С.
Трёхмерная математическая модель и алгоритм численного решения для
мониторинга и прогнозирования процессов подземного выщелачивания в по-
ристой среде . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Каландаров А.А.
Численное моделирование связанной динамической задачи термоупругости
в напряжениях . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Равшанов Н., Рахманов Х.Э. Фаттаева Д.А.
Моделирование пространственно-временной динамики площади водоёма (на
примере Каттакурганского водохранилища) на основе индексов NDWI,
NDVI, EVI и ансамблевых методов обучения . . . . . . . . . . . . . . . . . . . 61

Хажиев И.О., Шобдаров Э.Б.
Регуляризация начально-краевой задачи для неоднородного параболическо-
го уравнения с меняющимся направлением времени . . . . . . . . . . . . . . . 74

Равшанов Н., Боборахимов Б.И., Бердиев М.И.
Модель и алгоритмы классификации аномальных явлений на основе сходи-
мости акустико-визуальных сигналов . . . . . . . . . . . . . . . . . . . . . . . 88

Рустамов Н., Мухамеджанов Н.Б.
Конструкция и принцип работы когенеративного фрактального солнечного
коллектора . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Холияров Э.Ч., Тураев Д.Ш.
Численное решение плоскорадиальной граничной обратной задачи для урав-
нения нестационарной релаксационной фильтрации жидкости в пористой
среде . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Ахмедов Д.М., Маматова Н.Х.
Оптимальный метод приближённого решения гиперсингулярных интеграль-
ных уравнений . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Шадиметов Х.М., Элмуратов Г.Ч.
Оптимизация приближенного вычисления интегралов от быстроосцилирую-
щих функций в пространстве Соболева комплекснозначных функций . . . . 132

Зиякулова Ш.А.
Об оптимальных итерационных и прямых методах решения задачи Дирихле
для уравнения Пуассона . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143



Contents

Alimova N.B., Parovik R.I.
FrOsFHN software package for quantitative and qualitative analysis of the
FitzHugh-Nagumo fractional oscillator with variable memory . . . . . . . . . . . 5

Eshkulov M.U., Khamdamov R.Kh.
Design and analysis of solar water supply system for multi-story residential build-
ings based on Boolean programming . . . . . . . . . . . . . . . . . . . . . . . . . 18

Ravshanov N., Usmonov L.S.
Three-dimensional mathematical model and numerical solution algorithm for
monitoring and predicting in-situ leaching processes in porous medium . . . . . . 26

Kalandarov A.A.
Numerical simulation of the coupled dynamic problem of thermoelasticity in
stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Ravshanov N., Rakhmanov Kh.E. Fattaeva D.A.
Modeling the spatio-temporal dynamics of a reservoir area (using the Kattakur-
gan Reservoir as an example) based on NDWI, NDVI, EVI indices and ensemble
learning methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Khajiev I.O., Shobdarov E.B.
Regularization of the initial-boundary value problem for a inhomogeneous
parabolic equation with changing time direction . . . . . . . . . . . . . . . . . . 74

Ravshanov N., Boborakhimov B.I., Berdiev M.I.
Model and algorithms for classifying anomalous phenomena based on the con-
vergence of acoustic-visual signals . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Rustamov N., Mukhamejanov N.B.
Design and operating principle of a cogenerative fractal solar collector . . . . . . 103

Kholiyarov E.Ch., Turaev D.Sh.
Numerical solution of plane-radial boundary value inverse problem for the equa-
tion of non-stationary relaxation filtration of fluid in a porous medium . . . . . . 112

Akhmedov D.M., Mamatova N.H.
An optimal method for the approximate solution of the hypersingular integral
equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Shadimetov Kh.M., Elmuratov G.Ch.
Optimization of approximate computation of integrals of rapidly oscillating func-
tions in the Sobolev space of complex-valued functions . . . . . . . . . . . . . . . 132

Ziyakulova Sh.A.
On optimal iterative and direct methods for solving the Dirichlet problem for
the Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143




	PCAM-6-2025-4
	1
	mundarija
	oblojka


