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The article analyzes the hydrodynamic processes associated with underground min-
ing, in particular, the acid extraction of precious metals from ore deposits. In order to
comprehensively study, monitor and predict the behavior of the object, a mathematical
model (MM) based on the filtration-convection and diffusion processes characteristic of
underground fluid filtration was developed. This model includes the influence of various
hydrodynamic parameters, in particular, the filtration coefficient and average porosity,
which are functions of the pressure level and process kinetics. Analysis of the problem
statement shows that the change in pressure in the ore deposit resulting from the pouring
and extraction of the solution directly affects the permeability and porosity coefficients
of the layer. The experimental results showed that the change in hydrodynamic param-
eters was proportional to the change in pressure, with an exponential behavior observed
under high pressure and a linear behavior under low pressure. It should be noted that
in the process of in-situ leaching (ISL), a chemical reaction occurred as a result of the
reagent’s effect on the ore deposits, and the substance passed from one phase to another,
as a result of which the hydrodynamic parameters of the pore medium (filtration and
porosity coefficients) and pressure changes in the ore reservoir were observed.
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1 Introduction
The discovery, development and effective use of valuable geological reinjection wells

remains an important priority for all societies. The technological progress of our time
requires the extraction and use of underground mineral reinjection wells . Therefore, the
study of effective methodologies for the extraction of minerals is of great importance. The
acceptance of ISL as an advanced technique is gaining momentum, therefore, the study,
prediction and decision-making of the processes of underground filtration of liquids and
gases requires the development of mathematical support that adequately reflects them
and the conduct of computational experiments.

Scientific research has been conducted on the MM and study of ISL processes, and
significant fundamental and practical results have been achieved.

[1] article was dedicated to the research, development and implementation of algo-
rithms for solving MMs and filtration-diffusion problems, which were an important factor
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for conducting comprehensive research and making management decisions in order to in-
crease the efficiency of groundwater protection during the development of mineral deposits
and acid treatment.

The main focus of [2] scientific research was on expanding the use of the ISL method
and identifying effective strategies and tools for its use in the mineral deposits. In addi-
tion, monitoring the groundwater level in ISL areas is very important for hydrogeological
studies. This monitoring helps to assess filtration processes, evaluate the performance
of the technological solution, identify potential solution leaks, understand the hydraulic
connections between productive geological structures, and determine the stability of the
hydrodynamic regime in the area of interest.

In articles [3–5], MM and digital algorithm were given for liquid within the pore
medium filtering three dimensional hydrodynamic process of ISL solution of problem De-
veloped mathematical methods ore layers mastery parameters every side by side learning,
injection and dig to take wells optimal placement choose, their stream speed assessment
of groundwater pollution from injection wells protection to do provision factor to account
to take possible gives. Because of the problem is described by a system of quasi-linear
partial differential equations of the multidimensional parabolic type, obtaining an ana-
lytical solution is a difficult task. For digital integration task components according to
division and the currents management from the methods used in case limited differences
to the scheme based algorithm built. The proposed mathematical model can be used as a
tool for analyzing and predicting the parameters of ore deposits and mineral extraction.

[6–8] mainly include the initial stage of leaching, a kinetically controlled process,
a liquid-solid reaction in which the particle in question was transferred to the nucleus.
Minerals in soluble acids are mainly dependent on the binding of the hydrogen ion to the
anion, however, the overall dissolution rate was not related to the rate of this reaction,
since such reactions were almost instantaneous.

Research [9–12] proposed to solve these problems by proposing a training data gen-
eration methodology adapted to the most reinjection well-intensive computational fluid
dynamics problems encountered in the modeling of fluid flow in porous media. Traditional
digital modeling from the methods entrance and suitable coming expected exit information
included training information collection creation for used, in which well networks various
to the forms separately attention given. Next actions taken data into neural networks
suitable to format to convert directed. Data neural network in architecture applicable ac-
tivation in functions in view caught information to the range adaptation for normalized.
This initial processing to give phase of the neuron model created from the data effective to
study provides , this and ISL processes exactly to predict makes it easier. Offer reaching
of the equipment the advantage is on the ISL site currently active or expected technologi-
cal modes based on hydrodynamic properties prophecy to do neural network for teaching
for big, reliable information collection present from reaching consists of of this approach
main meaning current in time in mining areas applicable expenses determination simula-
tion aside past, future prophecy to do or in the layer the current hydrodynamic regime
determination for in advance trained artificial intelligence technologies in use lies down.
Thus, the innovative approach presented in these articles serves to overcome the compu-
tational barriers associated with traditional methods and optimize prediction, enabling
faster and more efficient decision-making in reinjection well extraction operations.

In subsequent studies [13, 14], complex, closely interconnected technical systems (for
example, sequential wells - pumping stations - reagent concentrators, etc.) were studied
in the technological processes of mixing. It was shown that all of these subsystems are
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interconnected and that a disruption in the technological regime of even one subsystem
can lead to a complete shutdown of the entire work cycle. Therefore, the present in
time many component systems work exit progressive to the methods big attention is
being given, from them one is in-situ washing method. Compared to other methods, this
method is considered the most economical and environmentally friendly approach, as its
use does not lead to environmental degradation. This method is also widely used in the
uranium mining industry, which is of great economic importance. The demand for energy
from uranium, which is its main injection well, is constantly increasing. This observation
emphasizes the importance of scientific research on effective methods of extraction of
precious metals, in particular, the application of self-leaching process.

[15–18] scientific studies have investigated the processes of working with the ISL
method in uranium deposits located in the Republic of Kazakhstan. Among the 15 active
mining sites in Kazakhstan, SL offers a secure, dependable, and relatively cost-effective
method for metal extraction. A significant challenge encountered during mining opera-
tions stems from the subterranean nature of the solution’s interaction, as subsequent pro-
cesses are concealed beneath the surface, thereby impeding effective decision-making [ [15].
Geological modeling involves delineating the ore body and characterizing the lithological
and filtration properties of the formation [16]. Reference [12] underscores the application
of mathematical modeling to develop a geological and technological model for uranium
In-Situ Leaching (ISL), as well as its utility in addressing geotechnical and environmental
challenges. Reference [13] offers comprehensive details on the implementation of a 3D
reactive transport approach, utilizing the Hytec code, at an operational scale in Kaza-
khstan. The Hytec technology employs computational clusters to resolve mass transport
issues, specifically to solve chemical equations for a broad spectrum of geochemical re-
actions, including aqueous complexation, oxidation-reduction, dissolution/precipitation,
and sorption. Furthermore, this technology incorporates a hydrodynamic module that
characterizes the filtration of solutions during ISL.

Current research [4, 5] works practical continuation as three dimensional mathematical
model and numerical from the algorithm used in case, the matter time change according
to solver programs complex and solution method offer is enough This issue the solution
finding process filtration, diffusion and kinetic of processes together movement through
to do is increased. of liquid movement to him impact doer volume or surface forces with
is determined. Movable in liquid of substances to pass two completely other mechanisms
through to the surface will come First, in liquid concentrations difference exists when,
molecular diffusion occurs will be, secondly, in the liquid melted substance movement
during the second one by pushing is taken. The combination of both processes is called
convective diffusion of substances in a liquid. It should be emphasized that during the
ISL process, the main hydrodynamic parameters of the research object change, firstly, as
a result of changes in pressure in the porous environment, and secondly, as a result of the
dissolution of material particles during acid treatment of the ore deposit.

Considering the above, this paper proposes a mathematical model to solve pressure
and kinetic related problems in ore deposit.

2 Problem statement
Mathematical modeling of the ISL process for limited 𝐺 in the field

𝐺 = {(𝑥, 𝑦, 𝑧, 𝑡), 0 < 𝑥 < 𝐿𝑥, 0 < 𝑦 < 𝐿𝑦, 0 < 𝑧 < 𝐿𝑧, 0 < 𝑡 ⩽ 𝑇} .
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useful concentration function of the component 𝐶2(𝑥, 𝑦, 𝑧, 𝑡) to determine what for equa-
tion of the pressure field propagation elastic filtration process:

𝛽𝑚(𝑥, 𝑦, 𝑧)ℎ(𝑥, 𝑦, 𝑧)
𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝑥

[︂
𝑘(𝑥, 𝑦, 𝑧)ℎ(𝑥, 𝑦, 𝑧)

𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥

]︂
+

+
𝜕

𝜕𝑦

[︂
𝑘(𝑥, 𝑦, 𝑧)ℎ(𝑥, 𝑦, 𝑧)

𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦

]︂
+

𝜕

𝜕𝑧

[︂
𝑘(𝑥, 𝑦, 𝑧)ℎ(𝑥, 𝑦, 𝑧)

𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧

]︂
+

+𝐹1(𝑥, 𝑦, 𝑧, 𝑡)− 𝐹2(𝑥, 𝑦, 𝑧, 𝑡), [𝑥, 𝑦, 𝑧] ∈ 𝐺,

(1)

with initial condation:
𝐻(𝑥, 𝑦, 𝑧, 𝑡) = 𝐻0(𝑥, 𝑦, 𝑧), 𝑡 = 0, (2)

and boundary conditions:

𝑘(𝑥, 𝑦, 𝑧)
𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥

⃒⃒⃒⃒
𝑥=0

= −𝛼1𝜉(𝐻 −𝐻0), (3)

𝑘(𝑥, 𝑦, 𝑧)
𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥

⃒⃒⃒⃒
𝑥=𝐿𝑥

= 𝛼1𝜉(𝐻 −𝐻0), (4)

𝑘(𝑥, 𝑦, 𝑧)
𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦

⃒⃒⃒⃒
𝑦=0

= −𝛼2𝜉(𝐻 −𝐻0), (5)

𝑘(𝑥, 𝑦, 𝑧)
𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦

⃒⃒⃒⃒
𝑦=𝐿𝑦

= 𝛼2𝜉(𝐻 −𝐻0), (6)

𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧

⃒⃒⃒⃒
𝑧=0

= 0, (7)

𝑘(𝑥, 𝑦, 𝑧)
𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧

⃒⃒⃒⃒
𝑧=𝐿𝑧

= 𝛼3𝜉(𝐻 −𝐻0). (8)

Here: 𝐻(𝑥, 𝑦, 𝑧, 𝑡) – pressure value, (𝑚); 𝐻0(𝑥, 𝑦, 𝑧) – initial pressure value, (𝑚); 𝑚 –
porosity coefficient value; 𝑘(𝑥, 𝑦, 𝑧) – filter efficiency, (𝑚/𝑑𝑎𝑦); 𝑡 – time (day); ℎ(𝑥, 𝑦, 𝑧) –
thickness of the ore horizon (𝑚); 𝛽 – coefficient of elastic capacity, (𝑚2/𝑘𝑔); 𝛼1, 𝛼2, 𝛼3 –
constants that take the values 0 or 1; 𝐿𝑥 – length of medium by 𝑂𝑥 axis (𝑚); 𝐿𝑦 – length
of medium by 𝑂𝑦 axis (𝑚); 𝐿𝑧 – length of medium by 𝑂𝑧 axis (𝑚); 𝜉 – equation scaling
factor (1/𝑑𝑎𝑦);

𝐹1(𝑥, 𝑦, 𝑧, 𝑡) =
𝑁1∑︀

𝑖,𝑗=1

𝑞1,𝑖(𝑡)𝛿(𝑥− 𝑥𝑖,𝑗, 𝑦 − 𝑦𝑖,𝑗, 𝑧 − 𝑧𝑖,𝑗) – power of the well;

𝐹2(𝑥, 𝑦, 𝑧, 𝑡) =
𝑁2∑︀

𝑖,𝑗=1

𝑞2,𝑗(𝑡)𝛿(𝑥− 𝑥𝑖,𝑗, 𝑦 − 𝑦𝑖,𝑗, 𝑧 − 𝑧𝑖,𝑗) – power of the production well;

𝑞𝑖,𝑗(𝑡)–the power of the well; 𝑁1, 𝑁2, respectively, the number of the production and

injection wells; 𝛿𝑖,𝑗 =
{︂

1, 𝑥 = 𝑥𝑖,𝑗, 𝑦 = 𝑦𝑖,𝑗, 𝑧 = 𝑧𝑖,𝑗
0, 𝑜𝑡ℎ𝑒𝑟 𝑎𝑙𝑙 𝑐𝑜𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠

– Dirac is a delta function . (1)–(8)

using the finite difference method, we introduce the following dimensionless variables:

𝐻* =
𝐻

𝐻0

, 𝑥* =
𝑥

𝐿𝑥

, 𝑦* =
𝑦

𝐿𝑦

, 𝑧* =
𝑧

𝐿𝑧

, 𝑘* =
𝑘

𝑘0
, ℎ* =

ℎ

ℎ0
, 𝜏 =

κ0𝑡

𝐿2
, 𝛽* =

𝛽

𝛽0
,

𝑞1,𝑖
* =

𝑞1,𝑖𝐿
2

κ0𝐻0ℎ0
, 𝐹1

* =

𝑁1∑︁
𝑖

𝑞1,𝑖
*(𝑡)𝛿(𝑥− 𝑥𝑖, 𝑦 − 𝑦𝑖, 𝑧 − 𝑧𝑖), 𝐻*0 =

𝐻0

𝐻0

, 𝜉* =
𝜉𝐿

κ0

,
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𝑞2,𝑗
* =

𝑞2,𝑗𝐿
2

κ0𝐻0ℎ0
, 𝐹2

* =

𝑁1∑︁
𝑗

𝑞2,𝑗
*(𝑡)𝛿(𝑥− 𝑥𝑗, 𝑦 − 𝑦𝑗, 𝑧 − 𝑧𝑗), 𝐻*0 =

𝐻0

𝐻0

, 𝜉* =
𝜉𝐿

κ0

*
.

these substitutions into equations (1)-(8), we get:

𝛽*𝑚(𝑥, 𝑦, 𝑧)ℎ*(𝑥, 𝑦, 𝑧)
𝜕𝐻*(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
=

=
𝜕

𝜕𝑥*

[︂
𝑘*(𝑥, 𝑦, 𝑧)ℎ*(𝑥, 𝑦, 𝑧)

𝜕𝐻*(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥*

]︂
+

+
𝜕

𝜕𝑦*

[︂
𝑘*(𝑥, 𝑦, 𝑧)ℎ*(𝑥, 𝑦, 𝑧)

𝜕𝐻*(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦*

]︂
+

+
𝜕

𝜕𝑧*

[︂
𝑘*(𝑥, 𝑦, 𝑧)ℎ*(𝑥, 𝑦, 𝑧)

𝜕𝐻*(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧*

]︂
+

+𝐹1
*(𝑥, 𝑦, 𝑧, 𝑡)− 𝐹2

*(𝑥, 𝑦, 𝑧, 𝑡), [𝑥, 𝑦, 𝑧] ∈ 𝐺,

(9)

with initial condation:
𝐻*(𝑥, 𝑦, 𝑧, 𝑡) = 𝐻*0(𝑥, 𝑦, 𝑧), 𝑡 = 0, (10)

and boundary conditions:

𝑘*(𝑥, 𝑦, 𝑧)
𝜕𝐻*(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥*

⃒⃒⃒⃒
𝑥=0

= −𝛼1𝜉
*(𝐻* −𝐻0

*), (11)

𝑘(𝑥, 𝑦, 𝑧)
𝜕𝐻*(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥*

⃒⃒⃒⃒
𝑥=𝐿𝑥

= 𝛼1𝜉
*(𝐻* −𝐻0

*), (12)

𝑘*(𝑥, 𝑦, 𝑧)
𝜕𝐻*(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦*

⃒⃒⃒⃒
𝑦=0

= −𝛼2𝜉
*(𝐻* −𝐻0

*), (13)

𝑘*(𝑥, 𝑦, 𝑧)
𝜕𝐻*(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦*

⃒⃒⃒⃒
𝑦=𝐿𝑦

= 𝛼2𝜉
*(𝐻* −𝐻0

*), (14)

𝜕𝐻*(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧*

⃒⃒⃒⃒
𝑧=0

= 0, (15)

𝑘*(𝑥, 𝑦, 𝑧)
𝜕𝐻*(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧*

⃒⃒⃒⃒
𝑧=𝐿𝑧

= 𝛼3𝜉
*(𝐻* −𝐻0

*). (16)

Later, to simplify the problem, we drop the "*" sign in the variable and express the
equations (9) – (16) as follows:

𝛽𝑚(𝑥, 𝑦, 𝑧)ℎ(𝑥, 𝑦, 𝑧)
𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝑥

[︂
𝑘(𝑥, 𝑦, 𝑧)ℎ(𝑥, 𝑦, 𝑧)

𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥

]︂
+

+
𝜕

𝜕𝑦

[︂
𝑘(𝑥, 𝑦, 𝑧)ℎ(𝑥, 𝑦, 𝑧)

𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦

]︂
+

𝜕

𝜕𝑧

[︂
𝑘(𝑥, 𝑦, 𝑧)ℎ(𝑥, 𝑦, 𝑧)

𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧

]︂
+

+𝐹1(𝑥, 𝑦, 𝑧, 𝑡)− 𝐹2(𝑥, 𝑦, 𝑧, 𝑡), [𝑥, 𝑦, 𝑧] ∈ 𝐺,

(17)

with initial condation:
𝐻(𝑥, 𝑦, 𝑧, 𝑡) = 𝐻0(𝑥, 𝑦, 𝑧), 𝑡 = 0, (18)

and boundary conditions:

𝑘(𝑥, 𝑦, 𝑧)
𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥

⃒⃒⃒⃒
𝑥=0

= −𝛼1𝜉(𝐻 −𝐻0), (19)
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𝑘(𝑥, 𝑦, 𝑧)
𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥

⃒⃒⃒⃒
𝑥=𝐿𝑥

= 𝛼1𝜉(𝐻 −𝐻0), (20)

𝑘(𝑥, 𝑦, 𝑧)
𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦

⃒⃒⃒⃒
𝑦=0

= −𝛼2𝜉(𝐻 −𝐻0), (21)

𝑘(𝑥, 𝑦, 𝑧)
𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦

⃒⃒⃒⃒
𝑦=𝐿𝑦

= 𝛼2𝜉(𝐻 −𝐻0), (22)

𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧

⃒⃒⃒⃒
𝑧=0

= 0, (23)

𝑘(𝑥, 𝑦, 𝑧)
𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧

⃒⃒⃒⃒
𝑧=𝐿𝑧

= 𝛼3𝜉(𝐻 −𝐻0). (24)

The convective-diffusion equation of the spread of injected acid in the area with injec-
tion wells:

𝑚𝑔
𝜕𝐶1(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝑥

[︂
𝐷𝑥𝑥(𝑥, 𝑦, 𝑧)

𝜕𝐶1(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥
+

+ 𝐷𝑥𝑦(𝑥, 𝑦, 𝑧)
𝜕𝐶1(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦
+𝐷𝑥𝑧(𝑥, 𝑦, 𝑧)

𝜕𝐶1(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧

]︂
+

+
𝜕

𝜕𝑦

[︂
𝐷𝑦𝑦(𝑥, 𝑦, 𝑧)

𝜕𝐶1(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦
+𝐷𝑦𝑥(𝑥, 𝑦, 𝑧)

𝜕𝐶1(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥
+

+ 𝐷𝑦𝑧(𝑥, 𝑦, 𝑧)
𝜕𝐶1(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧

]︂
+

𝜕

𝜕𝑧

[︂
𝐷𝑧𝑧(𝑥, 𝑦, 𝑧)

𝜕𝐶1(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧
+

+𝐷𝑧𝑥(𝑥, 𝑦, 𝑧)
𝜕𝐶1(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥
+𝐷𝑧𝑦(𝑥, 𝑦, 𝑧)

𝜕𝐶1(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦

]︂
−

−𝜕(𝑉𝑥(𝑥, 𝑦, 𝑧, 𝑡)𝐶1(𝑥, 𝑦, 𝑧, 𝑡))

𝜕𝑥
− 𝜕(𝑉𝑦(𝑥, 𝑦, 𝑧, 𝑡)𝐶1(𝑥, 𝑦, 𝑧, 𝑡))

𝜕𝑦
−

−𝜕(𝑉𝑧(𝑥, 𝑦, 𝑧, 𝑡)𝐶1(𝑥, 𝑦, 𝑧, 𝑡))

𝜕𝑧
, [𝑥, 𝑦, 𝑧] ∈ 𝐺.

(25)

with initial condation:
𝐶1(𝑥, 𝑦, 𝑧, 𝑡) = 0, 𝑡 = 0, (26)

boundary condation:
𝐶1(𝑥, 𝑦, 𝑧, 𝑡) = 0, (𝑥, 𝑦, 𝑧) ∈ 𝐺𝑘, (27)

and wells inside conditions with :

𝐶1(𝑥, 𝑦, 𝑧, 𝑡) = 𝐶3𝑖, (𝑥, 𝑦, 𝑧) ∈ 𝐺0, (28)

(︂
𝜕𝐶1(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥

)︂2

+

(︂
𝜕𝐶1(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦

)︂2

+

(︂
𝜕𝐶1(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧

)︂2

= 0, (𝑥, 𝑦, 𝑧) ∈ 𝐺𝑢. (29)

The desired concentration distribution of the mixture is determined by solving the
following equation:
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𝑚𝑐
𝜕𝐶2(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
+
𝜕𝑁

𝜕𝑡
=

=
𝜕

𝜕𝑥

[︂
𝐷𝑥𝑥(𝑥, 𝑦, 𝑧)

𝜕𝐶2(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥
+𝐷𝑥𝑦(𝑥, 𝑦, 𝑧)

𝜕𝐶2(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦
+

+𝐷𝑥𝑧(𝑥, 𝑦, 𝑧)
𝜕𝐶1(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧

]︂
+

𝜕

𝜕𝑦

[︂
𝐷𝑦𝑦(𝑥, 𝑦, 𝑧)

𝜕𝐶2(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦
+

+𝐷𝑦𝑥(𝑥, 𝑦, 𝑧)
𝜕𝐶2(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥
+𝐷𝑦𝑧(𝑥, 𝑦, 𝑧)

𝜕𝐶2(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧

]︂
+

+
𝜕

𝜕𝑧

[︂
𝐷𝑧𝑧(𝑥, 𝑦, 𝑧)

𝜕𝐶2(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧
+𝐷𝑧𝑥(𝑥, 𝑦, 𝑧)

𝜕𝐶2(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥
+

+ 𝐷𝑧𝑦(𝑥, 𝑦, 𝑧)
𝜕𝐶2(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦

]︂
− 𝜕(𝑉𝑥(𝑥, 𝑦, 𝑧, 𝑡)𝐶2(𝑥, 𝑦, 𝑧, 𝑡))

𝜕𝑥
−

−𝜕(𝑉𝑦(𝑥, 𝑦, 𝑧, 𝑡)𝐶2(𝑥, 𝑦, 𝑧, 𝑡))

𝜕𝑦
− 𝜕(𝑉𝑧(𝑥, 𝑦, 𝑧, 𝑡)𝐶2(𝑥, 𝑦, 𝑧, 𝑡))

𝜕𝑧
,

[𝑥, 𝑦, 𝑧] ∈ 𝐺,

(30)

with initial condation:
𝐶2(𝑥, 𝑦, 𝑧, 𝑡) = 𝐶0

2 , 𝑡 = 0, (31)

boundary conditions:
𝜕𝐶2(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥

⃒⃒⃒⃒
𝑥=0

= −𝛼1

𝜄
(𝐶2 − 𝐶0

2), (32)

𝜕𝐶2(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥

⃒⃒⃒⃒
𝑥=𝐿𝑥

=
𝛼1

𝜄
(𝐶2 − 𝐶0

2), (33)

𝜕𝐶2(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦

⃒⃒⃒⃒
𝑦=0

= −𝛼2

𝜄
(𝐶2 − 𝐶0

2), (34)

𝜕𝐶2(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦

⃒⃒⃒⃒
𝑦=𝐿𝑦

=
𝛼2

𝜄
(𝐶2 − 𝐶0

2), (35)

𝜕𝐶2(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧

⃒⃒⃒⃒
𝑧=0

= 0, (36)

𝜕𝐶2(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧

⃒⃒⃒⃒
𝑧=𝐿𝑧

=
𝛼3

𝜄
(𝐶2 − 𝐶0

2), (37)

and as well as wells inside conditions:

𝐶2(𝑥, 𝑦, 𝑧, 𝑡) = 𝐶4𝑖, (𝑥, 𝑦, 𝑧) ∈ 𝐺0, (38)(︂
𝜕𝐶2(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥

)︂2

+

(︂
𝜕𝐶2(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦

)︂2

+

(︂
𝜕𝐶2(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧

)︂2

= 0, (𝑥, 𝑦, 𝑧) ∈ 𝐺𝑢. (39)

As dimensionless variables are introduced to solve problems (1)–(8) numerically, we
reduce equations (25)–(39) to dimensionless variables using the finite difference method,
and for simplicity, we omit this process.

The substance one out of phase to the second passage speed defining mass exchange
kinetics equation following to appear has:

𝜕𝑁(𝑥, 𝑦, 𝑡)

𝜕𝑡
= 𝛾(𝐶1)𝑓(𝐶2, 𝑁, 𝑡), (40)
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𝑁(𝑥, 𝑦, 𝑡) = 𝑁0(𝑥, 𝑦), 𝑡 = 0, [𝑥, 𝑦] ∈ 𝐺. (41)

where: 𝐶1 – the concentration of the fuel liquid, 𝐶2 – the concentration of the resulting
mixture, 𝐷𝑥𝑥, 𝐷𝑥𝑦, 𝐷𝑥𝑧, 𝐷𝑦𝑥, 𝐷𝑦𝑦, 𝐷𝑦𝑧, 𝐷𝑧𝑥, 𝐷𝑧𝑦, 𝐷𝑧𝑧 – filtration coefficients corresponding
to 𝑥, 𝑦, 𝑧, (𝑚2/𝑑𝑎𝑦), 𝑁 – process kinetics, 𝛾 – mass density of the solution, (𝑘𝑔/𝑚2);
– coefficient of equalization of dimensions of equations, (𝑚); 𝑉𝑥, 𝑉𝑦, 𝑉𝑧 – filtration rates
respectively by 𝑂𝑥,𝑂𝑦 and 𝑂𝑧 axes (𝑚/𝑑𝑎𝑦), and filtration rates are determined by
Darcy’s law:

𝑉𝑥(𝑥, 𝑦, 𝑧, 𝑡) = −𝑘(𝑥, 𝑦, 𝑧)
𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥
, (42)

𝑉𝑦(𝑥, 𝑦, 𝑧, 𝑡) = −𝑘(𝑥, 𝑦, 𝑧)
𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦
, (43)

𝑉𝑧(𝑥, 𝑦, 𝑧, 𝑡) = −𝑘(𝑥, 𝑦, 𝑧)
𝜕𝐻(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧
. (44)

3 Algorithm of problem solving
Because of complexity of given problem, it is difficult to find analytical solution. here-

fore, we exchange continuous area of problem to grid area as following:

Ω𝑥𝑦𝑧 = {(𝑥𝑖 = 𝑖∆𝑥, 𝑦𝑗 = 𝑗∆𝑦, 𝑧𝑘 = 𝑘∆𝑧,) ; 𝑖 = 1, 𝑁 ; 𝑗 = 1,𝑀, 𝑘 = 1, 𝐿,
}︀

and to transfer equation (1) to a finite-difference problem, an algorithmic concept of a
variable-direction uncertainty scheme (longitudinal-conduit scheme) is used. The tran-
sition from the 𝑛 – th time layer to the 𝑛 + 1 – th layer is performed in three stages
with a step of 1/3. This as a result three finite difference equations system step-by -step
solution is taken . These solutions for 𝑛+1/3 – in the layer first limited different equation
following the form will take.
Approximation of the equation in the n+1/3 layer with respect to the axis 𝑂𝑥:

𝛽𝑚𝑖,𝑗,𝑘ℎ𝑖,𝑗,𝑘(𝐻
𝑛+1/3
𝑖,𝑗,𝑘 −𝐻𝑛

𝑖,𝑗,𝑘)

Δ𝜏/3
=

=
κ𝑖−0.5,𝑗,𝑘ℎ𝑖−0.5,𝑗,𝑘𝐻

𝑛+1/3
𝑖−1,𝑗,𝑘−(κ𝑖−0.5,𝑗,𝑘ℎ𝑖−0.5,𝑗,𝑘+κ𝑖+0.5,𝑗,𝑘ℎ𝑖+0.5,𝑗,𝑘)𝐻

𝑛+1/3
𝑖,𝑗,𝑘 +κ𝑖+0.5,𝑗,𝑘ℎ𝑖+0.5,𝑗,𝑘𝐻

𝑛+1/3
𝑖+1,𝑗,𝑘

Δ𝑥2 +

+
κ𝑖,𝑗−0.5,𝑘ℎ𝑖,𝑗−0.5,𝑘𝐻

𝑛
𝑖,𝑗−1,𝑘−(κ𝑖,𝑗−0.5,𝑘ℎ𝑖,𝑗−0.5,𝑘+κ𝑖,𝑗+0.5,𝑘ℎ𝑖,𝑗+0.5,𝑘)𝐻

𝑛
𝑖,𝑗,𝑘+κ𝑖,𝑗+0.5,𝑘ℎ𝑖,𝑗+0.5,𝑘𝐻

𝑛
𝑖,𝑗+1,𝑘

Δ𝑦2
+

+
κ𝑖,𝑗,𝑘−0.5ℎ𝑖,𝑗,𝑘−0.5𝐻

𝑛
𝑖,𝑗,𝑘−1−(κ𝑖,𝑗,𝑘−0.5ℎ𝑖,𝑗,𝑘−0.5+κ𝑖,𝑗,𝑘+0.5ℎ𝑖,𝑗,𝑘+0.5)𝐻

𝑛
𝑖,𝑗,𝑘+κ𝑖,𝑗,𝑘+0.5ℎ𝑖,𝑗,𝑘+0.5𝐻

𝑛
𝑖,𝑗,𝑘+1

Δ𝑧2
+

+
𝐹1,𝑖,𝑗,𝑘

3
− 𝐹2,𝑖,𝑗,𝑘

3

via grouping similar elements, we get a system of tridiagonal algebraic equations:

𝑎𝑖,𝑗,𝑘𝐻
𝑛+1/3
𝑖−1,𝑗,𝑘 − 𝑏𝑖,𝑗,𝑘𝐻

𝑛+1/3
𝑖,𝑗,𝑘 + 𝑐𝑖,𝑗,𝑘𝐻

𝑛+1/3
𝑖+1,𝑗,𝑘 = −𝑓𝑖,𝑗,𝑘, (45)

here: 𝑎𝑖,𝑗,𝑘 =
κ𝑖−0.5,𝑗,𝑘ℎ𝑖−0.5,𝑗,𝑘

Δ𝑥2 , 𝑏𝑖,𝑗,𝑘 =
𝛽𝑚𝑖,𝑗,𝑘ℎ𝑖,𝑗,𝑘

Δ𝜏/3
+

κ𝑖−0.5,𝑗,𝑘ℎ𝑖−0.5,𝑗,𝑘+κ𝑖+0.5,𝑗,𝑘ℎ𝑖+0.5,𝑗,𝑘

Δ𝑥2 ,

𝑐𝑖,𝑗,𝑘 =
κ𝑖+0.5,𝑗,𝑘ℎ𝑖+0.5,𝑗,𝑘

∆𝑥2
,

𝑓𝑖,𝑗,𝑘 =
κ𝑖,𝑗−0.5,𝑘ℎ𝑖,𝑗−0.5,𝑘𝐻

𝑛
𝑖,𝑗−1,𝑘−(κ𝑖,𝑗−0.5,𝑘ℎ𝑖,𝑗−0.5,𝑘+κ𝑖,𝑗+0.5,𝑘ℎ𝑖,𝑗+0.5,𝑘)𝐻

𝑛
𝑖,𝑗,𝑘+κ𝑖,𝑗+0.5,𝑘ℎ𝑖,𝑗+0.5,𝑘𝐻

𝑛
𝑖,𝑗+1,𝑘

Δ𝑦2
+

κ𝑖,𝑗,𝑘−0.5ℎ𝑖,𝑗,𝑘−0.5𝐻
𝑛
𝑖,𝑗,𝑘−1−(κ𝑖,𝑗,𝑘−0.5ℎ𝑖,𝑗,𝑘−0.5+κ𝑖,𝑗,𝑘+0.5ℎ𝑖,𝑗,𝑘+0.5)𝐻

𝑛
𝑖,𝑗,𝑘+κ𝑖,𝑗,𝑘+0.5ℎ𝑖,𝑗,𝑘+0.5𝐻

𝑛
𝑖,𝑗,𝑘+1

Δ𝑧2
+

+
𝛽𝑚𝑖,𝑗,𝑘ℎ𝑖,𝑗,𝑘𝐻

𝑛
𝑖,𝑗,𝑘

Δ𝜏/3
+

𝐹1,𝑖,𝑗,𝑘

3
− 𝐹2,𝑖,𝑗,𝑘

3
.
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(19) boundary condition 𝑂𝑥 axis according to approximation as follows we get:

κ1,𝑗,𝑘

−3𝐻𝑛+1/3
0,𝑗,𝑘 + 4𝐻

𝑛+1/3
1,𝑗,𝑘 −𝐻𝑛+1/3

2,𝑗,𝑘

2∆𝑥
= −𝛼1𝜉(𝐻

𝑛+1/3
1,𝑗,𝑘 −𝐻0). (46)

From three diagonal equations system (38) we find 𝐻𝑛+1/3
2,𝑗,𝑘 at 𝑖 = 1:

𝑎1,𝑗,𝑘𝐻
𝑛+1/3
0,𝑗,𝑘 − 𝑏1,𝑗,𝑘𝐻𝑛+1/3

1,𝑗,𝑘 + 𝑐1,𝑗,𝑘𝐻
𝑛+1/3
2,𝑗,𝑘 = −𝑓1,𝑗,𝑘,

𝐻
𝑛+1/3
2,𝑗,𝑘 = −𝑎1,𝑗,𝑘

𝑐1,𝑗,𝑘
𝐻

𝑛+1/3
0,𝑗,𝑘 +

𝑏1,𝑗,𝑘
𝑐1,𝑗,𝑘

𝐻
𝑛+1/3
1,𝑗,𝑘 − 𝑓1,𝑗,𝑘

𝑐1,𝑗,𝑘
. (47)

We find 𝐻𝑛+1/3
0,𝑗,𝑘 by substituting 𝐻𝑛+1/3

2,𝑗,𝑘 in (47) into (46):

𝐻
𝑛+1/3
0,𝑗,𝑘 =

κ1,𝑗,𝑘𝑏1,𝑗,𝑘 − 4κ1,𝑗,𝑘𝑐1,𝑗,𝑘 − 2𝜄1∆𝑥𝜉𝑐1,𝑗,𝑘
κ1,𝑗,𝑘𝑎1,𝑗,𝑘 − 3κ1,𝑗,𝑘𝑐1,𝑗,𝑘

𝐻
𝑛+1/3
1,𝑗,𝑘 +

2𝜄1∆𝑥𝜉𝑐1,𝑗,𝑘𝐻0 − κ1,𝑗,𝑘𝑓1,𝑗,𝑘
κ1,𝑗,𝑘𝑎1,𝑗,𝑘 − 3κ1,𝑗,𝑘𝑐1,𝑗,𝑘

,

here 𝛼0,𝑗,𝑘,𝛽0,𝑗,𝑘 coefficients are found by following formula:

𝛼0,𝑗,𝑘 =
κ1,𝑗,𝑘𝑏1,𝑗,𝑘 − 4κ1,𝑗,𝑘𝑐1,𝑗,𝑘 − 2𝜄1∆𝑥𝜉𝑐1,𝑗,𝑘

κ1,𝑗,𝑘𝑎1,𝑗,𝑘 − 3κ1,𝑗,𝑘𝑐1,𝑗,𝑘
, 𝛽0,𝑗,𝑘 =

2∆𝑥𝜄1𝜉𝑐1,𝑗,𝑘𝐻0 − κ1,𝑗,𝑘𝑓1,𝑗,𝑘
κ1,𝑗,𝑘𝑎1,𝑗,𝑘 − 3κ1,𝑗,𝑘𝑐1,𝑗,𝑘

.

As above, we obtain follows from the approximation of (20) the boundary condition
with respect to 𝑂𝑥:

κ𝑁,𝑗,𝑘

𝐻
𝑛+1/3
𝑁−2,𝑗,𝑘 − 4𝐻

𝑛+1/3
𝑁−1,𝑗,𝑘 + 3𝐻

𝑛+1/3
𝑁,𝑗,𝑘

2∆𝑥
= −𝛼1𝜉(𝐻

𝑛+1/3
𝑁−1,𝑗,𝑘 −𝐻0). (48)

Using sweep method, at 𝑁,𝑁 − 1 and 𝑁 − 2, we find 𝐻𝑛+1/3
𝑁−1,𝑗,𝑘 and 𝐻𝑛+1/3

𝑁−2,𝑗,𝑘:

𝐻
𝑛+1/3
𝑁−1,𝑗,𝑘 = 𝛼𝑁−1,𝑗,𝑘𝐻

𝑛+1/3
𝑁,𝑗,𝑘 + 𝛽𝑁−1,𝑗,𝑘, (49)

𝐻
𝑛+1/3
𝑁−2,𝑗,𝑘 = 𝛼𝑁−2,𝑗,𝑘𝐻

𝑛+1/3
𝑁−1,𝑗,𝑘 + 𝛽𝑁−2,𝑗,𝑘 =

= 𝛼𝑁−2,𝑗,𝑘𝛼𝑁−1,𝑗,𝑘𝐻
𝑛+1/3
𝑁,𝑗,𝑘 + 𝛼𝑁−2𝑗,𝑘𝛽𝑁−1𝑗,𝑘 + 𝛽𝑁−2,𝑗,𝑘.

(50)

We find 𝐻𝑛+1/3
𝑁,𝑗,𝑘 by substituting 𝐻𝑛+1/3

𝑁−1,𝑗,𝑘 in (49) and 𝐻𝑛+1/3
𝑁−2,𝑗,𝑘 in (50) into (47):

𝐻
𝑛+1/3
𝑁,𝑗,𝑘 =

=
4𝛽𝑁−1,𝑗,𝑘κ𝑁,𝑗,𝑘 − 2𝜄1𝜉∆𝑥𝛽𝑁−1,𝑗,𝑘 + 2𝜄1𝜉∆𝑥𝐻0 − 𝛼𝑁−2,𝑗,𝑘𝛽𝑁−1,𝑗,𝑘κ𝑁,𝑗,𝑘 − 𝛽𝑁−2,𝑗,𝑘κ𝑁,𝑗,𝑘

𝛼𝑁−2,𝑗,𝑘𝛼𝑁−1,𝑗,𝑘κ𝑁,𝑗,𝑘 + 3κ𝑁,𝑗,𝑘 − 4𝛼𝑁−1,𝑗,𝑘κ𝑁,𝑗,𝑘 + 2𝜄1𝜉∆𝑥𝛼𝑁−1,𝑗,𝑘

.

(51)
𝐻

𝑛+1/3
𝑁−1,𝑗,𝑘, 𝐻

𝑛+1/3
𝑁−2,𝑗,𝑘,. . . ,𝐻

𝑛+1/3
1,𝑗,𝑘 pressure values are connected to each athers by following:

𝐻
𝑛+1/3
𝑖,𝑗,𝑘 = 𝛼𝑖,𝑗,𝑘𝐻

𝑛+1/3
𝑖+1,𝑗,𝑘 + 𝛽𝑖,𝑗,𝑘, 𝑖 = 𝑁 − 1, 1, 𝑗 = 0, 𝑀, 𝑘 = 0, 𝐿.

As above, we use the finite-difference method to solve equation (1) on the 𝑛+2/3 time
scale, grouping similar terms to obtain a system of tridiagonal algebraic equations with
respect to the required variables:

𝑎𝑖,𝑗,𝑘𝐻
𝑛+2/3
𝑖,𝑗−1,𝑘 − 𝑏𝑖,𝑗,𝑘𝐻

𝑛+2/3
𝑖,𝑗,𝑘 + 𝑐𝑖,𝑗,𝑘𝐻

𝑛+2/3
𝑖,𝑗+1,𝑘 = −𝑓 𝑖,𝑗,𝑘, (52)
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here: 𝑎𝑖,𝑗,𝑘 =
κ𝑖,𝑗−0.5,𝑘ℎ𝑖,𝑗−0.5,𝑘

Δ𝑦2
, 𝑏𝑖,𝑗,𝑘 =

𝛽𝑚𝑖,𝑗,𝑘ℎ𝑖,𝑗,𝑘

Δ𝜏/3
+

κ𝑖,𝑗−0.5,𝑘ℎ𝑖,𝑗−0.5,𝑘+κ𝑖,𝑗+0.5,𝑘ℎ𝑖,𝑗+0.5,𝑘

Δ𝑦2
,

𝑐𝑖,𝑗,𝑘 =
κ𝑖,𝑗+0.5,𝑘ℎ𝑖,𝑗+0.5,𝑘

∆𝑦2
,

𝑓 𝑖,𝑗,𝑘 =
κ𝑖−0.5,𝑗,𝑘ℎ𝑖−0.5,𝑗,𝑘𝐻

𝑛+1/3
𝑖−1,𝑗,𝑘−(κ𝑖−0.5,𝑗,𝑘ℎ𝑖−0.5,𝑗,𝑘+κ𝑖+0.5,𝑗,𝑘ℎ𝑖+0.5,𝑗,𝑘)𝐻

𝑛+1/3
𝑖,𝑗,𝑘 +κ𝑖+0.5,𝑗,𝑘ℎ𝑖+0.5,𝑗,𝑘𝐻

𝑛+1/3
𝑖+1,𝑗,𝑘

Δ𝑥2 +
κ𝑖,𝑗,𝑘−0.5ℎ𝑖,𝑗,𝑘−0.5𝐻

𝑛+1/3
𝑖,𝑗,𝑘−1−(κ𝑖,𝑗,𝑘−0.5ℎ𝑖,𝑗,𝑘−0.5+κ𝑖,𝑗,𝑘+0.5ℎ𝑖,𝑗,𝑘+0.5)𝐻

𝑛+1/3
𝑖,𝑗,𝑘 +κ𝑖,𝑗,𝑘+0.5ℎ𝑖,𝑗,𝑘+0.5𝐻

𝑛+1/3
𝑖,𝑗,𝑘+1

Δ𝑧2
+

+
𝛽𝑚𝑖,𝑗,𝑘ℎ𝑖,𝑗,𝑘𝐻

𝑛+1/3
𝑖,𝑗,𝑘

Δ𝜏/3
+

𝐹1,𝑖,𝑗,𝑘

3
− 𝐹2,𝑖,𝑗,𝑘

3
.

As above, we obtain follows from the approximation of (21) the boundary condition
with respect to 𝑂𝑦:

κ𝑖,1,𝑘

−3𝐻𝑛+2/3
𝑖,0,𝑘 + 4𝐻

𝑛+2/3
𝑖,1,𝑘 −𝐻𝑛+2/3

𝑖,2,𝑘

2∆𝑦
= −𝛼2𝜉(𝐻

𝑛+2/3
𝑖,1,𝑘 −𝐻0), (53)

we find 𝐻𝑛+2/3
𝑖,2,𝑘 via the system of tridiagonal equations (52) at 𝑗 = 1:

𝑎𝑖,1,𝑘𝐻
𝑛+2/3
𝑖,0,𝑘 − 𝑏𝑖,1,𝑘𝐻𝑛+2/3

𝑖,1,𝑘 + 𝑐𝑖,1,𝑘𝐻
𝑛+2/3
𝑖,2,𝑘 = −𝑓 𝑖,1,𝑘, (54)

𝐻
𝑛+2/3
𝑖,2,𝑘 = −𝑎𝑖,1,𝑘

𝑐𝑖,1,𝑘
𝐻

𝑛+2/3
𝑖,0,𝑘 +

𝑏𝑖,1,𝑘
𝑐𝑖,1,𝑘

𝐻
𝑛+2/3
𝑖,1,𝑘 −

𝑓 𝑖,1,𝑘

𝑐𝑖,1,𝑘
, (55)

we get 𝐻𝑛+2/3
𝑖,0,𝑘 by substituting 𝐻𝑛+2/3

𝑖,2,𝑘 in (55) into (53):

𝐻
𝑛+2/3
𝑖,0,𝑘 =

κ𝑖,1,𝑘𝑏𝑖,1,𝑘 − 4κ𝑖,1,𝑘𝑐𝑖,1,𝑘 − 2𝜄2𝜉∆𝑦𝑐𝑖,1,𝑘
κ𝑖,1,𝑘𝑎𝑖,1,𝑘 − 3κ𝑖,1,𝑘𝑐𝑖,1,𝑘

𝐻
𝑛+2/3
𝑖,1,𝑘 +

2𝜄2𝜉∆𝑦𝑐𝑖,1,𝑘𝐻0 − κ𝑖,1,𝑘𝑓 𝑖,1,𝑘

κ𝑖,1,𝑘𝑎𝑖,1,𝑘 − 3κ𝑖,1,𝑘𝑐𝑖,1,𝑘
.

Sweep method coefficients 𝛼𝑖,0,𝑘 and 𝛽𝑖,0,𝑘 are calculated by the following formula:

𝛼𝑖,0,𝑘 =
κ𝑖,1,𝑘𝑏𝑖,1,𝑘 − 4κ𝑖,1,𝑘𝑐𝑖,1,𝑘 − 2𝜄2𝜉∆𝑦𝑐𝑖,1,𝑘

κ𝑖,1,𝑘𝑎𝑖,1,𝑘 − 3κ𝑖,1,𝑘𝑐𝑖,1,𝑘
, 𝛽𝑖,0,𝑘 =

2𝜄2𝜉∆𝑦𝑐𝑖,1,𝑘𝐻0 − κ𝑖,1,𝑘𝑓 𝑖,1,𝑘

κ𝑖,1,𝑘𝑎𝑖,1,𝑘 − 3κ𝑖,1,𝑘𝑐𝑖,1,𝑘
.

As above we obtain follows from the approximation of (22) the boundary condition
with respect to 𝑂𝑦:

κ𝑖,𝑁,𝑘

𝐻
𝑛+2/3
𝑖,𝑁−2,𝑘 − 4𝐻

𝑛+2/3
𝑖,𝑁−1,𝑘 + 3𝐻

𝑛+2/3
𝑖,𝑁,𝑘

2∆𝑦
= −𝛼2𝜉(𝐻

𝑛+2/3
𝑖,𝑁−1,𝑘 −𝐻0). (56)

Using sweep method, at 𝑁,𝑁 − 1 and 𝑁 − 2, we find 𝐻𝑛+2/3
𝑖,𝑁−1,𝑘 and 𝐻𝑛+2/3

𝑖,𝑁−2,𝑘:

𝐻
𝑛+2/3
𝑖,𝑁−1,𝑘 = 𝛼𝑖,𝑁−1,𝑘𝐻

𝑛+2/3
𝑖,𝑁,𝑘 + 𝛽𝑖,𝑁−1,𝑘, (57)

𝐻
𝑛+2/3
𝑖,𝑁−2,𝑘 = 𝛼𝑖,𝑁−2,𝑘𝐻

𝑛+2/3
𝑖,𝑁−1,𝑘 + 𝛽𝑖,𝑁−2,𝑘 =

= 𝛼𝑖,𝑁−2,𝑘𝛼𝑖,𝑁−1,𝑘𝐻
𝑛+2/3
𝑖,𝑁,𝑘 + 𝛼𝑖,𝑁−2,𝑘𝛽𝑖,𝑁−1,𝑘 + 𝛽𝑖,𝑁−2,𝑘.

(58)

We find 𝐻𝑛+2/3
𝑖,𝑁,𝑘 by substituting 𝐻𝑛+2/3

𝑖,𝑁−1,𝑘 in (57) and 𝐻𝑛+2/3
𝑖,𝑁−2,𝑘 in (58) into (56):

𝐻
𝑛+2/3
𝑖,𝑁,𝑘 =

=
4𝛽𝑖,𝑁−1,𝑘κ𝑖,𝑁,𝑘 − 2𝜄2𝜉∆𝑦𝛽𝑖,𝑁−1,𝑘 + 2𝜄2𝜉∆𝑦𝐻0 − 𝛼𝑖,𝑁−2,𝑘𝛽𝑖,𝑁−1,𝑘κ𝑖,𝑁,𝑘 − 𝛽𝑖,𝑁−2,𝑘κ𝑖,𝑁,𝑘

𝛼𝑖,𝑁−2,𝑘𝛼𝑖,𝑁−1,𝑘κ𝑖,𝑁,𝑘 + 3κ𝑖,𝑁,𝑘 − 4𝛼𝑖,𝑁−1,𝑘κ𝑖,𝑁,𝑘 + 2𝜄2𝜉∆𝑦𝛼𝑖,𝑁−1,𝑘

.
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𝐻
𝑛+2/3
𝑖,𝑁−1,𝑘, 𝐻

𝑛+2/3
𝑖,𝑁−1,𝑘,. . . ,𝐻

𝑛+2/3
𝑖,1,𝑘 pressure values are connected to each athers by following:

𝐻
𝑛+2/3
𝑖,𝑗,𝑘 = 𝛼𝑖,𝑗,𝑘𝐻

𝑛+2/3
𝑖,𝑗+1,𝑘 + 𝛽𝑖,𝑗,𝑘, 𝑖 = 0, 𝑀, 𝑗 = 𝑁 − 1, 1, 𝑘 = 0, 𝐿.

As above, we use the finite-difference method to solve equation (1) on the 𝑛+ 1 time
scale, grouping similar terms to obtain a system of tridiagonal algebraic equations with
respect to the required variables:

𝑎𝑖,𝑗,𝑘𝐻
𝑛+1
𝑖,𝑗,𝑘−1 − 𝑏𝑖,𝑗,𝑘𝐻

𝑛+1
𝑖,𝑗,𝑘 + 𝑐𝑖,𝑗,𝑘𝐻

𝑛+1
𝑖,𝑗,𝑘+1 = −𝑓 𝑖,𝑗,𝑘, (59)

here : 𝑎𝑖,𝑗,𝑘 =
κ𝑖,𝑗,𝑘−0.5ℎ𝑖,𝑗,𝑘−0.5𝐻

𝑛+1
𝑖,𝑗,𝑘−1

Δ𝑧2
, 𝑏𝑖,𝑗,𝑘 =

𝛽𝑚𝑖,𝑗,𝑘ℎ𝑖,𝑗,𝑘

Δ𝜏/3
+

κ𝑖,𝑗,𝑘−0.5ℎ𝑖,𝑗,𝑘−0.5+κ𝑖,𝑗,𝑘+0.5ℎ𝑖,𝑗,𝑘+0.5

Δ𝑧2
,

𝑐𝑖,𝑗,𝑘 =
κ𝑖,𝑗,𝑘+0.5ℎ𝑖,𝑗,𝑘+0.5

∆𝑧2
,

𝑓 𝑖,𝑗,𝑘 =
κ𝑖−0.5,𝑗,𝑘ℎ𝑖−0.5,𝑗,𝑘𝐻

𝑛+2/3
𝑖−1,𝑗,𝑘−(κ𝑖−0.5,𝑗,𝑘ℎ𝑖−0.5,𝑗,𝑘+κ𝑖+0.5,𝑗,𝑘ℎ𝑖+0.5,𝑗,𝑘)𝐻

𝑛+2/3
𝑖,𝑗,𝑘 +κ𝑖+0.5,𝑗,𝑘ℎ𝑖+0.5,𝑗,𝑘𝐻

𝑛+2/3
𝑖+1,𝑗,𝑘

Δ𝑥2 +

+
κ𝑖,𝑗−0.5,𝑘ℎ𝑖,𝑗−0.5,𝑘𝐻

𝑛+2/3
𝑖,𝑗−1,𝑘−(κ𝑖,𝑗−0.5,𝑘ℎ𝑖,𝑗−0.5,𝑘+κ𝑖,𝑗+0.5,𝑘ℎ𝑖,𝑗+0.5,𝑘)𝐻

𝑛+2/3
𝑖,𝑗,𝑘 +κ𝑖,𝑗+0.5,𝑘ℎ𝑖,𝑗+0.5,𝑘𝐻

𝑛+2/3
𝑖,𝑗+1,𝑘

Δ𝑦2
+

+
𝛽𝑚𝑖,𝑗,𝑘ℎ𝑖,𝑗,𝑘𝐻

𝑛+2/3
𝑖,𝑗,𝑘

Δ𝜏/3
+

𝐹1,𝑖,𝑗,𝑘

3
− 𝐹2,𝑖,𝑗,𝑘

3
.

As above, we obtain follows from the approximation of (23) the boundary condition
with respect to 𝑂𝑧:

−3𝐻𝑛+1
𝑖,𝑗,0 + 4𝐻𝑛+1

𝑖,𝑗,1 −𝐻𝑛+1
𝑖,𝑗,2 = 0, (60)

we find 𝐻𝑛+1
𝑖,𝑗,2 via the system of tridiagonal equations (59) at k =1:

𝑎𝑖,𝑗,1𝐻
𝑛+1
𝑖,𝑗,0 − 𝑏𝑖,𝑗,1𝐻𝑛+1

𝑖,𝑗,1 + 𝑐𝑖,𝑗,1𝐻
𝑛+1
𝑖,𝑗,2 = −𝑓 𝑖,𝑗,1,

𝐻𝑛+1
𝑖,𝑗,2 = −𝑎𝑖,𝑗,1

𝑐𝑖,𝑗,1
𝐻𝑛+1

𝑖,𝑗,0 +
𝑏𝑖,𝑗,1
𝑐𝑖,𝑗,1

𝐻𝑛+1
𝑖,𝑗,1 −

𝑓 𝑖,𝑗,1

𝑐𝑖,𝑗,1
, (61)

we take 𝐻𝑛+1
𝑖,𝑗,0 by substituting 𝐻𝑛+1

𝑖,𝑗,2 in (61) into (60):

𝐻𝑛+1
𝑖,𝑗,0 =

(4𝑐𝑖,𝑗,1 − 𝑏𝑖,𝑗,1)
(3𝑐𝑖,𝑗,1 − 𝑎𝑖,𝑗,1)

𝐻𝑛+1
𝑖,𝑗,1 +

𝑓 𝑖,𝑗,1

(3𝑐𝑖,𝑗,1 − 𝑎𝑖,𝑗,1)
.

Sweep method coefficients 𝛼𝑖,0,𝑘 and 𝛽𝑖,0,𝑘 are calculated by the following formula:

𝛼𝑖,𝑗,0 =
(4𝑐𝑖,𝑗,1 − 𝑏𝑖,𝑗,1)
(3𝑐𝑖,𝑗,1 − 𝑎𝑖,𝑗,1)

, 𝛽𝑖,𝑗,0 =
𝑓 𝑖,𝑗,1

(3𝑐𝑖,𝑗,1 − 𝑎𝑖,𝑗,1)
.

As above, we obtain follows from the approximation of (24) the boundary condition
with respect to 𝑂𝑧:

κ𝑖,𝑗,𝑁

𝐻𝑛+1
𝑖,𝑗,𝑁−2 − 4𝐻𝑛+1

𝑖,𝑗,𝑁−1 + 3𝐻𝑛+1
𝑖,𝑗,𝑁

2∆𝑧
= −𝜄3𝜉(𝐻𝑛+1

𝑖,𝑗,𝑁−1 −𝐻0). (62)

Using sweep method, at 𝑁,𝑁 − 1 and 𝑁 − 2, we find 𝐻𝑛+1
𝑖,𝑗,𝑁−1 and 𝐻𝑛+1

𝑖,𝑗,𝑁−2:

𝐻𝑛+1
𝑖,𝑗,𝑁−1 = 𝛼𝑖,𝑗,𝑁−1𝐻

𝑛+1
𝑖,𝑗,𝑁 + 𝛽𝑖,𝑗,𝑁−1, (63)
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𝐻𝑛+1
𝑖,𝑗,𝑁−2 = 𝛼𝑖,𝑗,𝑁−2𝐻

𝑛+1
𝑖,𝑗,𝑁−1 + 𝛽𝑖,𝑗,𝑁−2 =

= 𝛼𝑖,𝑗,𝑁−2𝛼𝑖,𝑗,𝑁−1𝐻
𝑛+1
𝑖,𝑗,𝑁 + 𝛼𝑖,𝑗,𝑁−2𝛽𝑖,𝑗,𝑁−1 + 𝛽𝑖,𝑗,𝑁−2.

(64)

We find 𝐻𝑛+1
𝑖,𝑗,𝑁 by substituting 𝐻𝑛+1

𝑖,𝑗,𝑁−1 in (63) and 𝐻𝑛+1
𝑖,𝑗,𝑁−2 in (64) into (62):

𝐻𝑛+1
𝑖,𝑗,𝑁, =

=
4𝛽𝑖,𝑗,𝑁−1κ𝑖,𝑗,𝑁 − 2𝜄3𝜉∆𝑧𝛽𝑖,𝑗,𝑁−1 + 2𝜄3𝜉∆𝑧𝐻0 − 𝛼𝑖,𝑗,𝑁−2𝛽𝑖,𝑗,𝑁−1κ𝑖,𝑁,𝑘 − 𝛽𝑖,𝑗,𝑁−2κ𝑖,𝑗,𝑁

𝛼𝑖,𝑗,𝑁−2𝛼𝑖,𝑗,𝑁−1κ𝑖,𝑗,𝑁 + 3κ𝑖,𝑗,𝑁 − 4𝛼𝑖,𝑗,𝑁−1κ𝑖,𝑗,𝑁 + 2𝜄3𝜉∆𝑧𝛼𝑖,𝑗,𝑁−1

.

𝐻𝑛+1
𝑖,𝑗,𝑁−1, 𝐻

𝑛+1
𝑖,𝑗,𝑁−1,. . . ,𝐻

𝑛+1
𝑖,𝑗,1 pressure values are connected to each athers by following:

𝐻𝑛+1
𝑖,𝑗,𝑘 = 𝛼𝑖,𝑗,𝑘𝐻

𝑛+1
𝑖,𝑗,𝑘+1 + 𝛽𝑖,𝑗,𝑘, 𝑖 = 0, 𝐿, 𝑗 = 0, 𝑀, 𝑘 = 𝑁 − 1, 1.

As in the pressure equation, in the first concentration equation, the partial derivatives
for the three layers are solved by the finite difference method, and the system of tridiagonal
equations is solved using the coefficients of the drive. these works are presented in the
article [3]. For convenience, we present calculations for the first layer.

For the 𝑛 + 1/3 layer, we replace the differential equation with a finite difference
equation and obtain equations (28) for numerical integration.

𝑚𝑔
𝐶

𝑛+1/3
1,𝑖,𝑗,𝑘 −𝐶𝑛

1,𝑖,𝑗,𝑘

Δ𝜏/3
=

𝐷11,𝑖−0.5,𝑗,𝑘𝐶
𝑛+1/3
1,𝑖−1,𝑗,𝑘−(𝐷11,𝑖−0.5,𝑗,𝑘+𝐷11,𝑖+0.5,𝑗,𝑘)𝐶

𝑛+1/3
1,𝑖,𝑗,𝑘 +𝐷11,𝑖+0.5,𝑗,𝑘𝐶

𝑛+1/3
1,𝑖+1,𝑗,𝑘

Δ𝑥2 +

+
𝐷12,𝑖−0.5,𝑗,𝑘𝐶

𝑛
1,𝑖−1,𝑗−1,𝑘−𝐷12,𝑖−0.5,𝑗,𝑘𝐶

𝑛
1,𝑖−1,𝑗+1,𝑘−𝐷12,𝑖+0.5,𝑗,𝑘𝐶

𝑛
1,𝑖+1,𝑗−1,𝑘+𝐷12,𝑖+0.5,𝑗,𝑘𝐶

𝑛
1,𝑖+1,𝑗+1,𝑘

Δ𝑥Δ𝑦
+

+
𝐷13,𝑖−0.5,𝑗,𝑘𝐶

𝑛
1,𝑖−1,𝑗,𝑘−1−𝐷13,𝑖−0.5,𝑗,𝑘𝐶

𝑛
1,𝑖−1,𝑗,𝑘+1−𝐷13,𝑖+0.5,𝑗,𝑘𝐶

𝑛
1,𝑖+1,𝑗,𝑘−1+𝐷13,𝑖+0.5,𝑗,𝑘𝐶

𝑛
1,𝑖+1,𝑗,𝑘+1

Δ𝑥Δ𝑧
+

+
𝐷22,𝑖,𝑗−0.5,𝑘𝐶

𝑛
1,𝑖,𝑗−1,𝑘−(𝐷22,𝑖,𝑗−0.5,𝑘+𝐷22,𝑖,𝑗+0.5,𝑘)𝐶

𝑛
1,𝑖,𝑗,𝑘+𝐷22,𝑖,𝑗+0.5,𝑘𝐶

𝑛
1,𝑖,𝑗+1,𝑘

Δ𝑦2
+

+
𝐷21,𝑖,𝑗−0.5,𝑘𝐶

𝑛
1,𝑖−1,𝑗−1,𝑘−𝐷21,𝑖,𝑗−0.5,𝑘𝐶

𝑛
1,𝑖−1,𝑗+1,𝑘−𝐷21,𝑖,𝑗+0.5,𝑘𝐶

𝑛
1,𝑖+1,𝑗−1,𝑘+𝐷21,𝑖,𝑗+0.5,𝑘𝐶

𝑛
1,𝑖+1,𝑗+1,𝑘

Δ𝑥Δ𝑦
+

+
𝐷23,𝑖,𝑗−0.5,𝑘𝐶

𝑛
1,𝑖,𝑗−1,𝑘−1−𝐷23,𝑖,𝑗−0.5,𝑘𝐶

𝑛
1,𝑖,𝑗−1,𝑘+1−𝐷23,𝑖,𝑗+0.5,𝑘𝐶

𝑛
1,𝑖,𝑗+1,𝑘−1+𝐷23,𝑖,𝑗+0.5,𝑘𝐶

𝑛
1,𝑖,𝑗+1,𝑘+1

Δ𝑦Δ𝑧
+

+
𝐷33,𝑖,𝑗,𝑘−0.5𝐶

𝑛
1,𝑖,𝑗,𝑘−1−(𝐷33,𝑖,𝑗,𝑘−0.5+𝐷33,𝑖,𝑗,𝑘+0.5)𝐶

𝑛
1,𝑖,𝑗,𝑘+𝐷33,𝑖,𝑗,𝑘+0.5𝐶

𝑛
1,𝑖,𝑗,𝑘+1

Δ𝑧2
+

+
𝐷31,𝑖,𝑗−0.5,𝑘𝐶

𝑛
1,𝑖−1,𝑗,𝑘−1−𝐷31,𝑖,𝑗−0.5,𝑘𝐶

𝑛
1,𝑖−1,𝑗,𝑘+1−𝐷31,𝑖,𝑗+0.5,𝑘𝐶

𝑛
1,𝑖+1,𝑗,𝑘−1+𝐷31,𝑖,𝑗+0.5,𝑘𝐶

𝑛
1,𝑖+1,𝑗,𝑘+1

Δ𝑥Δ𝑧
+

+
𝐷32,𝑖,𝑗,𝑘−0.5𝐶

𝑛
1,𝑖,𝑗−1,𝑘−1−𝐷32,𝑖,𝑗,𝑘−0.5𝐶

𝑛
1,𝑖,𝑗−1,𝑘+1−𝐷32,𝑖,𝑗,𝑘+0.5𝐶

𝑛
1,𝑖,𝑗+1,𝑘−1+𝐷32,𝑖,𝑗,𝑘+0.5𝐶

𝑛
1,𝑖,𝑗+1,𝑘+1

Δ𝑦Δ𝑧
+

+
𝑉1,𝑖−0.5,𝑗,𝑘𝐶

𝑛
1,𝑖−1,𝑗,𝑘−𝑉1,𝑖+0.5,𝑗,𝑘𝐶

𝑛
1,𝑖+1,𝑗,𝑘

2Δ𝑥
+

𝑉2,𝑖,𝑗−05,𝑘𝐶
𝑛
1,𝑖,𝑗−1,𝑘−𝑉2,𝑖,𝑗+05,𝑘𝐶

𝑛
1,𝑖,𝑗+1,𝑘

2Δ𝑦
+

+
𝑉3,𝑖,𝑗,𝑘−05𝐶

𝑛
1,𝑖,𝑗,𝑘−1−𝑉3,𝑖,𝑗,𝑘+05𝐶

𝑛
1,𝑖,𝑗,𝑘+1

2Δ𝑧
,

and after grouping this equation, we get:

𝑎′𝑖,𝑗,𝑘𝐶
𝑛+1/3
1,𝑖−1,𝑗,𝑘 − 𝑏

′
𝑖,𝑗,𝑘𝐶

𝑛+1/3
1,𝑖,𝑗,𝑘 + 𝑐′𝑖,𝑗,𝑘𝐶

𝑛+1/3
1,𝑖+1,𝑗,𝑘 = −𝑓

′
𝑖,𝑗,𝑘, (65)

here : 𝑎′𝑖,𝑗,𝑘 =
𝐷11,𝑖−0.5,𝑗,𝑘

Δ𝑥2 , 𝑏′𝑖,𝑗,𝑘 =
𝑚𝑔

Δ𝜏/3
+

(𝐷11,𝑖−0.5,𝑗,𝑘+𝐷11,𝑖+0.5,𝑗,𝑘)

Δ𝑥2 , 𝑐′𝑖,𝑗,𝑘 =
𝐷11,𝑖+0.5,𝑗,𝑘

Δ𝑥2 ,

𝑓 ′
𝑖,𝑗,𝑘 =

𝐷12,𝑖−0.5,𝑗,𝑘𝐶
𝑛
1,𝑖−1,𝑗−1,𝑘−𝐷12,𝑖−0.5,𝑗,𝑘𝐶

𝑛
1,𝑖−1,𝑗+1,𝑘−𝐷12,𝑖+0.5,𝑗,𝑘𝐶

𝑛
1,𝑖+1,𝑗−1,𝑘+𝐷12,𝑖+0.5,𝑗,𝑘𝐶

𝑛
1,𝑖+1,𝑗+1,𝑘

Δ𝑥Δ𝑦
+

+
𝐷13,𝑖−0.5,𝑗,𝑘𝐶

𝑛
1,𝑖−1,𝑗,𝑘−1−𝐷13,𝑖−0.5,𝑗,𝑘𝐶

𝑛
1,𝑖−1,𝑗,𝑘+1−𝐷13,𝑖+0.5,𝑗,𝑘𝐶

𝑛
1,𝑖+1,𝑗,𝑘−1+𝐷13,𝑖+0.5,𝑗,𝑘𝐶

𝑛
1,𝑖+1,𝑗,𝑘+1

Δ𝑥Δ𝑧
+

+
𝐷22,𝑖,𝑗−0.5,𝑘𝐶

𝑛
1,𝑖,𝑗−1,𝑘−(𝐷22,𝑖,𝑗−0.5,𝑘+𝐷22,𝑖,𝑗+0.5,𝑘)𝐶

𝑛
1,𝑖,𝑗,𝑘+𝐷22,𝑖,𝑗+0.5,𝑘𝐶

𝑛
1,𝑖,𝑗+1,𝑘

Δ𝑦2
+

+
𝐷21,𝑖,𝑗−0.5,𝑘𝐶

𝑛
1,𝑖−1,𝑗−1,𝑘−𝐷21,𝑖,𝑗−0.5,𝑘𝐶

𝑛
1,𝑖−1,𝑗+1,𝑘−𝐷21,𝑖,𝑗+0.5,𝑘𝐶

𝑛
1,𝑖+1,𝑗−1,𝑘+𝐷21,𝑖,𝑗+0.5,𝑘𝐶

𝑛
1,𝑖+1,𝑗+1,𝑘

Δ𝑥Δ𝑦
+
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+
𝐷23,𝑖,𝑗−0.5,𝑘𝐶

𝑛
1,𝑖,𝑗−1,𝑘−1−𝐷23,𝑖,𝑗−0.5,𝑘𝐶

𝑛
1,𝑖,𝑗−1,𝑘+1−𝐷23,𝑖,𝑗+0.5,𝑘𝐶

𝑛
1,𝑖,𝑗+1,𝑘−1+𝐷23,𝑖,𝑗+0.5,𝑘𝐶

𝑛
1,𝑖,𝑗+1,𝑘+1

Δ𝑦Δ𝑧
+

+
𝐷33,𝑖,𝑗,𝑘−0.5𝐶

𝑛
1,𝑖,𝑗,𝑘−1−(𝐷33,𝑖,𝑗,𝑘−0.5+𝐷33,𝑖,𝑗,𝑘+0.5)𝐶

𝑛
1,𝑖,𝑗,𝑘+𝐷33,𝑖,𝑗,𝑘+0.5𝐶

𝑛
1,𝑖,𝑗,𝑘+1

Δ𝑧2
+

+
𝐷31,𝑖,𝑗−0.5,𝑘𝐶

𝑛
1,𝑖−1,𝑗,𝑘−1−𝐷31,𝑖,𝑗−0.5,𝑘𝐶

𝑛
1,𝑖−1,𝑗,𝑘+1−𝐷31,𝑖,𝑗+0.5,𝑘𝐶

𝑛
1,𝑖+1,𝑗,𝑘−1+𝐷31,𝑖,𝑗+0.5,𝑘𝐶

𝑛
1,𝑖+1,𝑗,𝑘+1

Δ𝑥Δ𝑧
+

+
𝐷32,𝑖,𝑗,𝑘−0.5𝐶

𝑛
1,𝑖,𝑗−1,𝑘−1−𝐷32,𝑖,𝑗,𝑘−0.5𝐶

𝑛
1,𝑖,𝑗−1,𝑘+1−𝐷32,𝑖,𝑗,𝑘+0.5𝐶

𝑛
1,𝑖,𝑗+1,𝑘−1+𝐷32,𝑖,𝑗,𝑘+0.5𝐶

𝑛
1,𝑖,𝑗+1,𝑘+1

Δ𝑦Δ𝑧
+

+
𝑉1,𝑖−0.5,𝑗,𝑘𝐶

𝑛
1,𝑖−1,𝑗,𝑘−𝑉1,𝑖+0.5,𝑗,𝑘𝐶

𝑛
1,𝑖+1,𝑗,𝑘

2Δ𝑥
+

𝑉2,𝑖,𝑗−05,𝑘𝐶
𝑛
1,𝑖,𝑗−1,𝑘−𝑉2,𝑖,𝑗+05,𝑘𝐶

𝑛
1,𝑖,𝑗+1,𝑘

2Δ𝑦
+

+
𝑉3,𝑖,𝑗,𝑘−05𝐶

𝑛
1,𝑖,𝑗,𝑘−1−𝑉3,𝑖,𝑗,𝑘+05𝐶

𝑛
1,𝑖,𝑗,𝑘+1

2Δ𝑧
+

𝑚𝑔𝐶𝑛
1,𝑖,𝑗,𝑘

Δ𝜏/3
.

As above, we obtain follows from the approximation of (30) the boundary condition
with respect to 𝑂𝑥:

−3𝐶𝑛+1/3
1,0,𝑗,𝑘 + 4𝐶

𝑛+1/3
1,1,𝑗,𝑘 − 𝐶

𝑛+1/3
1,2,𝑗,𝑘

2∆𝑥
= 0, (66)

we find 𝐶𝑛+1/3
1,2,𝑗,𝑘 via the system of tridiagonal equations (52) at 𝑖 = 1:

𝑎′1,𝑗,𝑘𝐶
𝑛+1/3
1,0,𝑗,𝑘 − 𝑏

′
1,𝑗,𝑘𝐶

𝑛+1/3
1,1,𝑗,𝑘 + 𝑐′1,𝑗,𝑘𝐶

𝑛+1/3
1,2,𝑗,𝑘 = −𝑓 ′

1,𝑗,𝑘,

𝐶
𝑛+1/3
1,2,𝑗,𝑘 = −𝑎

′
1,𝑗,𝑘

𝑐′1,𝑗,𝑘
𝐶

𝑛+1/3
1,0𝑗,𝑘 +

𝑏′1,𝑗,𝑘
𝑐′1,𝑗,𝑘

𝐶
𝑛+1/3
1,1,𝑗,𝑘 −

𝑓 ′
1,𝑗,𝑘

𝑐′1,𝑗,𝑘
,

(67)

we get 𝐶𝑛+1/3
1,0,𝑗,𝑘 by substituting 𝐶𝑛+1/3

1,2,𝑗,𝑘 in (60) into (59):

𝐶
𝑛+1/3
1,0,𝑗,𝑘 =

(𝑏′1,𝑗,𝑘 − 4𝑐′1,𝑗,𝑘)

(𝑎′1,𝑗,𝑘 − 3𝑐′1,𝑗,𝑘)
𝐶

𝑛+1/3
1,1,𝑗,𝑘 +

𝑓 ′
1,𝑗,𝑘

(3𝑐′1,𝑗,𝑘 − 𝑎′1,𝑗,𝑘)
.

Sweep method coefficients and are calculated by following formula:

𝛼′
0,𝑗,𝑘 =

(𝑏′1,𝑗,𝑘 − 4𝑐′1,𝑗,𝑘)

(𝑎′1,𝑗,𝑘 − 3𝑐′1,𝑗,𝑘)
, 𝛽′

0,𝑗,𝑘 =
𝑓 ′

1,𝑗,𝑘

(3𝑐′1,𝑗,𝑘 − 𝑎′1,𝑗,𝑘)
.

As above, we obtain follows from the approximation of (32) the boundary condition
with respect to 𝑂𝑥:

𝐶
𝑛+1/3
1,𝑁−2,𝑗,𝑘 − 4𝐶

𝑛+1/3
1,𝑁−1,𝑗,𝑘 + 3𝐶

𝑛+1/3
1,𝑁,𝑗,𝑘

2∆𝑥
= 0. (68)

Using sweep method, at 𝑁,𝑁 − 1𝑎𝑛𝑑𝑁 − 2, we find 𝐶𝑛+1/3
1,𝑁−1,𝑗,𝑘 and 𝐶𝑛+1/3

1,𝑁−2,𝑗,𝑘

𝐶
𝑛+1/3
1,𝑁−1,𝑗,𝑘 = 𝛼′

𝑁−1,𝑗,𝑘𝐶
𝑛+1/3
1,𝑁,𝑗,𝑘 + 𝛽′

𝑁−1,𝑗,𝑘, (69)

𝐶
𝑛+1/3
1,𝑁−2,𝑗,𝑘 = 𝛼′

𝑁−2,𝑗,𝑘𝐶
𝑛+1/3
1,𝑁−1,𝑗,𝑘 + 𝛽′

𝑁−2,𝑗,𝑘 =

= 𝛼′
𝑁−2,𝑗,𝑘𝛼

′
𝑁−1,𝑗,𝑘𝐶

𝑛+1/3
1,𝑁,𝑗,𝑘 + 𝛼′

𝑁−2,𝑗,𝑘𝛽
′
𝑁−1,𝑗,𝑘 + 𝛽′

𝑁−2,𝑗,𝑘.
(70)

We find 𝐶𝑛+1/3
1,𝑁,𝑗,𝑘 by substituting 𝐶𝑛+1/3

1,𝑁−1,𝑗,𝑘 in (62) and 𝐶𝑛+1/3
1,𝑁−2,𝑗,𝑘 in (63) into (61):

𝐶
𝑛+1/3
1,𝑁,𝑗,𝑘 =

4𝛽′
𝑁−1,𝑗,𝑘 − 𝛼′

𝑁−2,𝑗,𝑘𝛽
′
𝑁−1,𝑗,𝑘 − 𝛽′

𝑁−2,𝑗,𝑘

𝛼′
𝑁−2,𝑗,𝑘𝛼′

𝑁−1,𝑗,𝑘 − 4𝛼′
𝑁−1,𝑗,𝑘 + 3

.

𝐶
𝑛+1/3
1,𝑁−1,𝑗,𝑘, 𝐶

𝑛+1/3
1,𝑁−2,𝑗,𝑘, . . . , 𝐶

𝑛+1/3
1,1,𝑗,𝑘

concentration values are connected to each athers by following:
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𝐶
𝑛+1/3
1,𝑖,𝑗,𝑘 = 𝛼′

𝑖,𝑗,𝑘𝐶
𝑛+1/3
1,𝑖+1,𝑗,𝑘 + 𝛽′

𝑖,𝑗,𝑘; 𝑖 = 𝑁 − 1, 1, 𝑗 = 0, 𝑀, 𝑘 = 0, 𝐿.

Above like concentration of the mixture in the equation also three layer according
to partial derivatives limited difference in the manner is being answered and propulsive
coefficients through three diagonally equations system solved. this works [3] in the article
given. For convenience, we present calculations for the first layer.

𝑛+1/3 layer differential equation for finite difference equation with by replacing (33)
equations numerical integration for we get:

𝑚𝑔
𝐶

𝑛+1/3
2,𝑖,𝑗,𝑘 −𝐶𝑛

2,𝑖,𝑗,𝑘

Δ𝜏/3
=

𝐷11,𝑖−0.5,𝑗,𝑘𝐶
𝑛+1/3
2,𝑖−1,𝑗,𝑘−(𝐷11,𝑖−0.5,𝑗,𝑘+𝐷11,𝑖+0.5,𝑗,𝑘)𝐶

𝑛+1/3
2,𝑖,𝑗,𝑘 +𝐷11,𝑖+0.5,𝑗,𝑘𝐶

𝑛+1/3
2,𝑖+1,𝑗,𝑘

Δ𝑥2 +

+
𝐷12,𝑖−0.5,𝑗,𝑘𝐶

𝑛
2,𝑖−1,𝑗−1,𝑘−𝐷12,𝑖−0.5,𝑗,𝑘𝐶

𝑛
2,𝑖−1,𝑗+1,𝑘−𝐷12,𝑖+0.5,𝑗,𝑘𝐶

𝑛
2,𝑖+1,𝑗−1,𝑘+𝐷12,𝑖+0.5,𝑗,𝑘𝐶

𝑛
2,𝑖+1,𝑗+1,𝑘

Δ𝑥Δ𝑦
+

+
𝐷13,𝑖−0.5,𝑗,𝑘𝐶

𝑛
2,𝑖−1,𝑗,𝑘−1−𝐷13,𝑖−0.5,𝑗,𝑘𝐶

𝑛
2,𝑖−1,𝑗,𝑘+1−𝐷13,𝑖+0.5,𝑗,𝑘𝐶

𝑛
2,𝑖+1,𝑗,𝑘−1+𝐷13,𝑖+0.5,𝑗,𝑘𝐶

𝑛
2,𝑖+1,𝑗,𝑘+1

Δ𝑥Δ𝑧
+

+
𝐷22,𝑖,𝑗−0.5,𝑘𝐶

𝑛
2,𝑖,𝑗−1,𝑘−(𝐷22,𝑖,𝑗−0.5,𝑘+𝐷22,𝑖,𝑗+0.5,𝑘)𝐶

𝑛
2,𝑖,𝑗,𝑘+𝐷22,𝑖,𝑗+0.5,𝑘𝐶

𝑛
2,𝑖,𝑗+1,𝑘

Δ𝑦2
+

+
𝐷21,𝑖,𝑗−0.5,𝑘𝐶

𝑛
2,𝑖−1,𝑗−1,𝑘−𝐷21,𝑖,𝑗−0.5,𝑘𝐶

𝑛
2,𝑖−1,𝑗+1,𝑘−𝐷21,𝑖,𝑗+0.5,𝑘𝐶

𝑛
2,𝑖+1,𝑗−1,𝑘+𝐷21,𝑖,𝑗+0.5,𝑘𝐶

𝑛
2,𝑖+1,𝑗+1,𝑘

Δ𝑥Δ𝑦
+

+
𝐷23,𝑖,𝑗−0.5,𝑘𝐶

𝑛
2,𝑖,𝑗−1,𝑘−1−𝐷23,𝑖,𝑗−0.5,𝑘𝐶

𝑛
2,𝑖,𝑗−1,𝑘+1−𝐷23,𝑖,𝑗+0.5,𝑘𝐶

𝑛
2,𝑖,𝑗+1,𝑘−1+𝐷23,𝑖,𝑗+0.5,𝑘𝐶

𝑛
2,𝑖,𝑗+1,𝑘+1

Δ𝑦Δ𝑧
+

+
𝐷33,𝑖,𝑗,𝑘−0.5𝐶

𝑛
2,𝑖,𝑗,𝑘−1−(𝐷33,𝑖,𝑗,𝑘−0.5+𝐷33,𝑖,𝑗,𝑘+0.5)𝐶

𝑛
2,𝑖,𝑗,𝑘+𝐷33,𝑖,𝑗,𝑘+0.5𝐶

𝑛
2,𝑖,𝑗,𝑘+1

Δ𝑧2
+

+
𝐷31,𝑖,𝑗−0.5,𝑘𝐶

𝑛
2,𝑖−1,𝑗,𝑘−1−𝐷31,𝑖,𝑗−0.5,𝑘𝐶

𝑛
2,𝑖−1,𝑗,𝑘+1−𝐷31,𝑖,𝑗+0.5,𝑘𝐶

𝑛
2,𝑖+1,𝑗,𝑘−1+𝐷31,𝑖,𝑗+0.5,𝑘𝐶

𝑛
2,𝑖+1,𝑗,𝑘+1

Δ𝑥Δ𝑧
+

+
𝐷32,𝑖,𝑗,𝑘−0.5𝐶

𝑛
2,𝑖,𝑗−1,𝑘−1−𝐷32,𝑖,𝑗,𝑘−0.5𝐶

𝑛
2,𝑖,𝑗−1,𝑘+1−𝐷32,𝑖,𝑗,𝑘+0.5𝐶

𝑛
2,𝑖,𝑗+1,𝑘−1+𝐷32,𝑖,𝑗,𝑘+0.5𝐶

𝑛
2,𝑖,𝑗+1,𝑘+1

Δ𝑦Δ𝑧
+

+
𝑉1,𝑖−0.5,𝑗,𝑘𝐶

𝑛
2,𝑖−1,𝑗,𝑘−𝑉1,𝑖+0.5,𝑗,𝑘𝐶

𝑛
2,𝑖+1,𝑗,𝑘

2Δ𝑥
+

𝑉2,𝑖,𝑗−05,𝑘𝐶
𝑛
2,𝑖,𝑗−1,𝑘−𝑉2,𝑖,𝑗+05,𝑘𝐶

𝑛
2,𝑖,𝑗+1,𝑘

2Δ𝑦
+

+
𝑉3,𝑖,𝑗,𝑘−05𝐶

𝑛
2,𝑖,𝑗,𝑘−1−𝑉3,𝑖,𝑗,𝑘+05𝐶

𝑛
2,𝑖,𝑗,𝑘+1

2Δ𝑧
,

and aftert grouping this equation, we get:

̃︀𝑎𝑖,𝑗,𝑘𝐶𝑛+1/3
2,𝑖−1,𝑗,𝑘 −̃︀𝑏𝑖,𝑗,𝑘𝐶𝑛+1/3

2,𝑖,𝑗,𝑘 + ̃︀𝑐𝑖,𝑗,𝑘𝐶𝑛+1/3
2,𝑖+1,𝑗,𝑘 = − ̃︀𝑓𝑖,𝑗,𝑘, (71)

here : ̃︀𝑎𝑖,𝑗,𝑘 = 𝐷11,𝑖−0.5,𝑗,𝑘

Δ𝑥2 ,

̃︀𝑏𝑖,𝑗,𝑘 = 𝑚𝑔

∆𝜏/3
+

(𝐷11,𝑖−0.5,𝑗,𝑘 +𝐷11,𝑖+0.5,𝑗,𝑘)

∆𝑥2
, ̃︀𝑐𝑖,𝑗,𝑘 = 𝐷11,𝑖+0.5,𝑗,𝑘

∆𝑥2
,

̃︀𝑓𝑖,𝑗,𝑘 = 𝐷12,𝑖−0.5,𝑗,𝑘𝐶
𝑛+1/3
2,𝑖−1,𝑗−1,𝑘−𝐷12,𝑖−0.5,𝑗,𝑘𝐶

𝑛+1/3
2,𝑖−1,𝑗+1,𝑘−𝐷12,𝑖+0.5,𝑗,𝑘𝐶

𝑛+1/3
2,𝑖+1,𝑗−1,𝑘+𝐷12,𝑖+0.5,𝑗,𝑘𝐶

𝑛+1/3
2,𝑖+1,𝑗+1,𝑘

Δ𝑥Δ𝑦
+

+
𝐷13,𝑖−0.5,𝑗,𝑘𝐶

𝑛+1/3
2,𝑖−1,𝑗,𝑘−1−𝐷13,𝑖−0.5,𝑗,𝑘𝐶

𝑛+1/3
2,𝑖−1,𝑗,𝑘+1−𝐷13,𝑖+0.5,𝑗,𝑘𝐶

𝑛+1/3
2,𝑖+1,𝑗,𝑘−1+𝐷13,𝑖+0.5,𝑗,𝑘𝐶

𝑛+1/3
2,𝑖+1,𝑗,𝑘+1

Δ𝑥Δ𝑧
+

+
𝐷22,𝑖,𝑗−0.5,𝑘𝐶

𝑛
2,𝑖,𝑗−1,𝑘−(𝐷22,𝑖,𝑗−0.5,𝑘+𝐷22,𝑖,𝑗+0.5,𝑘)𝐶

𝑛
2,𝑖,𝑗,𝑘+𝐷22,𝑖,𝑗+0.5,𝑘𝐶

𝑛
2,𝑖,𝑗+1,𝑘

Δ𝑦2
+

+
𝐷21,𝑖,𝑗−0.5,𝑘𝐶

𝑛
2,𝑖−1,𝑗−1,𝑘−𝐷21,𝑖,𝑗−0.5,𝑘𝐶

𝑛
2,𝑖−1,𝑗+1,𝑘−𝐷21,𝑖,𝑗+0.5,𝑘𝐶

𝑛
2,𝑖+1,𝑗−1,𝑘+𝐷21,𝑖,𝑗+0.5,𝑘𝐶

𝑛
2,𝑖+1,𝑗+1,𝑘

Δ𝑥Δ𝑦
+

+
𝐷23,𝑖,𝑗−0.5,𝑘𝐶

𝑛
2,𝑖,𝑗−1,𝑘−1−𝐷23,𝑖,𝑗−0.5,𝑘𝐶

𝑛
2,𝑖,𝑗−1,𝑘+1−𝐷23,𝑖,𝑗+0.5,𝑘𝐶

𝑛
2,𝑖,𝑗+1,𝑘−1+𝐷23,𝑖,𝑗+0.5,𝑘𝐶

𝑛
2,𝑖,𝑗+1,𝑘+1

Δ𝑦Δ𝑧
+

+
𝐷33,𝑖,𝑗,𝑘−0.5𝐶

𝑛
2,𝑖,𝑗,𝑘−1−(𝐷33,𝑖,𝑗,𝑘−0.5+𝐷33,𝑖,𝑗,𝑘+0.5)𝐶

𝑛
2,𝑖,𝑗,𝑘+𝐷33,𝑖,𝑗,𝑘+0.5𝐶

𝑛
2,𝑖,𝑗,𝑘+1

Δ𝑧2
+

+
𝐷23,𝑖,𝑗−0.5,𝑘𝐶

𝑛
2,𝑖,𝑗−1,𝑘−1−𝐷23,𝑖,𝑗−0.5,𝑘𝐶

𝑛
2,𝑖,𝑗−1,𝑘+1−𝐷23,𝑖,𝑗+0.5,𝑘𝐶

𝑛
2,𝑖,𝑗+1,𝑘−1+𝐷23,𝑖,𝑗+0.5,𝑘𝐶

𝑛
2,𝑖,𝑗+1,𝑘+1

Δ𝑦Δ𝑧
+

+
𝐷33,𝑖,𝑗,𝑘−0.5𝐶

𝑛
2,𝑖,𝑗,𝑘−1−(𝐷33,𝑖,𝑗,𝑘−0.5+𝐷33,𝑖,𝑗,𝑘+0.5)𝐶

𝑛
2,𝑖,𝑗,𝑘+𝐷33,𝑖,𝑗,𝑘+0.5𝐶

𝑛
2,𝑖,𝑗,𝑘+1

Δ𝑧2
+
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+
𝐷31,𝑖,𝑗−0.5,𝑘𝐶

𝑛
2,𝑖−1,𝑗,𝑘−1−𝐷31,𝑖,𝑗−0.5,𝑘𝐶

𝑛
2,𝑖−1,𝑗,𝑘+1−𝐷31,𝑖,𝑗+0.5,𝑘𝐶

𝑛
2,𝑖+1,𝑗,𝑘−1+𝐷31,𝑖,𝑗+0.5,𝑘𝐶

𝑛
2,𝑖+1,𝑗,𝑘+1

Δ𝑥Δ𝑧
+

+
𝐷32,𝑖,𝑗,𝑘−0.5𝐶

𝑛
2,𝑖,𝑗−1,𝑘−1−𝐷32,𝑖,𝑗,𝑘−0.5𝐶

𝑛
2,𝑖,𝑗−1,𝑘+1−𝐷32,𝑖,𝑗,𝑘+0.5𝐶

𝑛
2,𝑖,𝑗+1,𝑘−1+𝐷32,𝑖,𝑗,𝑘+0.5𝐶

𝑛
2,𝑖,𝑗+1,𝑘+1

Δ𝑦Δ𝑧
+

+
𝑉1,𝑖−0.5,𝑗,𝑘𝐶

𝑛
2,𝑖−1,𝑗,𝑘−𝑉1,𝑖+0.5,𝑗,𝑘𝐶

𝑛
2,𝑖+1,𝑗,𝑘

2Δ𝑥
+

𝑉2,𝑖,𝑗−05,𝑘𝐶
𝑛
2,𝑖,𝑗−1,𝑘−𝑉2,𝑖,𝑗+05,𝑘𝐶

𝑛
2,𝑖,𝑗+1,𝑘

2Δ𝑦
+

+
𝑉3,𝑖,𝑗,𝑘−05𝐶

𝑛
2,𝑖,𝑗,𝑘−1−𝑉3,𝑖,𝑗,𝑘+05𝐶

𝑛
2,𝑖,𝑗,𝑘+1

2Δ𝑧
+

𝑚𝑔𝐶𝑛
2,𝑖,𝑗,𝑘

Δ𝜏/3
.

As above, we obtain follows from the approximation of (35) the boundary condition
with respect to 𝑂𝑥:

−3𝐶𝑛+1/3
2,0,𝑗,𝑘 + 4𝐶

𝑛+1/3
2,1,𝑗,𝑘 − 𝐶

𝑛+1/3
2,2,𝑗,𝑘

2∆𝑥
= −𝜄(𝐶2,1,𝑗,𝑘 − 𝐶0

2),
(72)

we find 𝐶𝑛+1/3
2,2,𝑗,𝑘 via the system of tridiagonal equations (65) at 𝑖 = 1:

̃︀𝑎1,𝑗,𝑘𝐶𝑛+1/3
2,0,𝑗,𝑘 −̃︀𝑏1,𝑗,𝑘𝐶𝑛+1/3

2,1,𝑗,𝑘 + ̃︀𝑐1,𝑗,𝑘𝐶𝑛+1/3
2,2,𝑗,𝑘 = − ̃︀𝑓1,𝑗,𝑘,

𝐶
𝑛+1/3
2,2,𝑗,𝑘 = −̃︀𝑎1,𝑗,𝑘̃︀𝑐1,𝑗,𝑘𝐶𝑛+1/3

2,0,𝑗,𝑘 +
̃︀𝑏1,𝑗,𝑘̃︀𝑐1,𝑗,𝑘𝐶𝑛+1/3

2,1,𝑗,𝑘 −
̃︀𝑓1,𝑗,𝑘̃︀𝑐1,𝑗,𝑘 , (73)

we get 𝐶𝑛+1/3
2,0,𝑗,𝑘 by substituting 𝐶𝑛+1/3

2,2,𝑗,𝑘 in (66) into (65):

𝐶
𝑛+1/3
2,0,𝑗,𝑘 =

̃︀𝑏1,𝑗,𝑘 − 4̃︀𝑐1,𝑗,𝑘 − 2𝜄∆𝑥̃︀𝑐1,𝑗,𝑘̃︀𝑎1,𝑗,𝑘 − 3̃︀𝑐1,𝑗,𝑘 𝐶
𝑛+1/3
2,1,𝑗,𝑘 +

2𝜄∆𝑥̃︀𝑐1,𝑗,𝑘𝐶0
2 − ̃︀𝑓1,𝑗,𝑘̃︀𝑎1,𝑗,𝑘 − 3̃︀𝑐1,𝑗,𝑘 .

Sweep method coefficients ̃︀𝛼0,𝑗,𝑘and ̃︀𝛽0,𝑗,𝑘 are calculated by the following formula:

̃︀𝛼0,𝑗,𝑘 =
̃︀𝑏1,𝑗,𝑘 − 4̃︀𝑐1,𝑗,𝑘 − 2𝜄∆𝑥̃︀𝑐1,𝑗,𝑘̃︀𝑎1,𝑗,𝑘 − 3̃︀𝑐1,𝑗,𝑘 , ̃︀𝛽0,𝑗,𝑘 = 2𝜄∆𝑥̃︀𝑐1,𝑗,𝑘𝐶0

2 − ̃︀𝑓1,𝑗,𝑘̃︀𝑎1,𝑗,𝑘 − 3̃︀𝑐1,𝑗,𝑘 .

As above, we obtain follows from the approximation of (36) the boundary condition
with respect to 𝑂𝑥:

𝐶
𝑛+1/3
2,𝑁−2,𝑗,𝑘 − 4𝐶

𝑛+1/3
2,𝑁−1,𝑗,𝑘 + 3𝐶

𝑛+1/3
2,𝑁,𝑗,𝑘

2∆𝑥
= −𝜄(𝐶2,𝑁−1,𝑗,𝑘 − 𝐶0

2).
(74)

Using sweep method, at 𝑁,𝑁 − 1 and 𝑁 − 2, we find 𝐶𝑛+1/3
2,𝑁−1,𝑗,𝑘 and 𝐶𝑛+1/3

2,𝑁−2,𝑗,𝑘:

𝐶
𝑛+1/3
2,𝑁−1,𝑗,𝑘 = ̃︀𝛼𝑁−1,𝑗,𝑘𝐶

𝑛+1/3
1,𝑁,𝑗,𝑘 +

̃︀𝛽𝑁−1,𝑗,𝑘, (75)

𝐶
𝑛+1/3
2,𝑁−2,𝑗,𝑘 = ̃︀𝛼𝑁−2,𝑗,𝑘𝐶

𝑛+1/3
2,𝑁−1,𝑗,𝑘 +

̃︀𝛽𝑁−2,𝑗,𝑘 =

= ̃︀𝛼𝑁−2,𝑗,𝑘̃︀𝛼𝑁−1,𝑗,𝑘𝐶
𝑛+1/3
2,𝑁,𝑗,𝑘 + ̃︀𝛼𝑁−2,𝑗,𝑘

̃︀𝛽𝑁−1,𝑗,𝑘 + ̃︀𝛽𝑁−2,𝑗,𝑘.
(76)

We find 𝐶𝑛+1/3
2,𝑁,𝑗,𝑘 by substituting 𝐶𝑛+1/3

2,𝑁−1,𝑗,𝑘 in (68) and 𝐶𝑛+1/3
2,𝑁−2,𝑗,𝑘 in (69) into (67):

𝐶
𝑛+1/3
2,𝑁,𝑗,𝑘 =

4̃︀𝛽𝑁−1,𝑗,𝑘 − 2𝜄∆𝑥̃︀𝛽𝑁−1,𝑗,𝑘 + 2𝜄∆𝑥𝐶0
2 − ̃︀𝛼𝑁−2,𝑗,𝑘

̃︀𝛽𝑁−1,𝑗,𝑘 − ̃︀𝛽𝑁−2,𝑗,𝑘̃︀𝛼𝑁−2,𝑗,𝑘̃︀𝛼𝑁−1,𝑗,𝑘 + 2𝜄∆𝑥̃︀𝛼𝑁−1,𝑗,𝑘 − 4̃︀𝛼𝑁−1,𝑗,𝑘 + 3
.

𝐶
𝑛+1/3
2,𝑁−1,𝑗,𝑘, 𝐶

𝑛+1/3
2,𝑁−2,𝑗,𝑘, . . . , 𝐶

𝑛+1/3
2,1,𝑗,𝑘 concentration values are connected to each athers by

following:

𝐶
𝑛+1/3
2,𝑖,𝑗,𝑘 = ̃︀𝛼𝑖,𝑗,𝑘𝐶

𝑛+1/3
2,𝑖+1,𝑗,𝑘 +

̃︀𝛽𝑖,𝑗,𝑘, 𝑖 = 𝑁 − 1, 1, 𝑗 = 0, 𝑀, 𝑘 = 0, 𝐿.
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Thus, a mathematical model and a numerical solution algorithm were developed to
study and predict the underground mining process, make the right decisions, and conduct
computational experiments.

4 Analysis of results
The calculation results were performed using the Python programming language.

When solving the problem, the dimensions of the sphere were taken as follows: 0 <
𝑥 < 100(𝑚), 0 < 𝑦 < 50(𝑚), 𝑧 – varies depending on the ore reserve. Figures 1-10 show
the distribution of acid on the ore-bearing plain within the mine.

a) b)

c) d)

Figure 1 Pressure distribution in the area at 𝑡 = 1.6 minutes (a), porosity (b), The velocity
vectors (c) and concentration (d) changes are shown

From the initial calculation experiments that the velocity vectors are very large in the
areas of high porosity of the field and exist only around the wells, in the rest of the field
there is no movement. Fluid is supplied from the center and pumps are drawn from the
production wells. It can be seen that the pressure distribution in the field is high around
the injection well, low around the production wellsand evenly distributed in the rest of
the field. The porosity has not changed from the initial state and the velocity vectors are
large precisely in areas with high porosity. The concentration of the injection well has
changed slightly, in the rest of the places it is evenly distributed and has not reached the
production wells.

In a porous medium, it can be seen that the pressure distribution around the injection
well is significantly increased and the area of low pressure around the production wells
is enlarged. The velocity vectors are slightly normalized. The porosity of the medium
is almost static and changes very little. It was observed that the concentration slowly
spread around the injection well.

At 12 minutes of time, it can be seen that the process has developed dramatically. The
distribution of high pressure in the field is more than 10 m radius from the center and
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a) b)

c) d)

Figure 2 Pressure distribution in the area at 𝑡 = 2.9 minutes (a), porosity (b), the velocity
vectors (c) and concentration (d) changes are shown

a)
b)

c) d)

Figure 3 Pressure distribution in the area at 𝑡 = 12 minutes (a), porosity (b), the velocity
vectors (c) and concentration (d) changes are shown
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a) b)

c) d)

Figure 4 Pressure distribution in the area at 𝑡 = 1 hour (a), porosity (b), The velocity vectors
(c) and concentration (d) changes are shown

a) b)

c) d)

Figure 5 Pressure distribution in the area at 𝑡 = 1 hour 20 minutes (a), porosity (b), The
velocity vectors (c) and concentration (d) changes are shown

around the production wells low pressure expanded due to the operation of the pumps.
The pressure in the production and injection wells are almost affected. Velocity vectors



44 Ravshanov N., Usmonov L.S.

a) b)

c) d)

Figure 6 Pressure distribution in the area at 𝑡 = 2 hours (a), porosity (b), The velocity vectors
(c) and concentration (d) changes are shown

a) b)

c) d)

Figure 7 Pressure distribution in the area at 𝑡 = 3 hours (a), porosity (b), The velocity vectors
(c) and concentration (d) changes are shown

are much more stagnant and decelerated due to changes in porosity. It can be seen that
the concentration has shifted significantly.
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It can be seen that the pressures of the injection well and production wells have reached
a state of complete equilibrium. It can be seen that the porosity has increased almost
everywhere in the field and the permeability has increased, shifting from anisotropic to
isotropic, as a result of which the velocity vectors of the flow have reached a nearly
stationary state. It is observed that the concentration has reached the production well
and increases around the production wells.

In the field, the pressures of production wells and injection wells are full balanced.
The change of porosity and velocity vectors is almost unchanged from 20 minutes ago.
And the concentration increased significantly around the production wells.

The pressures of the field have reached a state of complete balance. Porosity and
velocity vectors are almost stationary. And the concentration increased and accumulated
around the production well.

It can be seen that the situation at 3 hours after the start of the process is almost the
same as at 2 hours. The porosity is very close to a homogeneous state and the velocity
vectors are evenly distributed throughout the field, i.e. there is a flow throughout the
entire field. The concentration is sufficient around the production well, i.e. the mixture
is sufficiently saturated, which means that it is easier to pump the mixture.

5 Conclusion
This study presented a comprehensive mathematical model, numerical solution al-

gorithm, and software to analyze the hydrodynamic processes involved in ISL in three-
dimensional porous media. The rate of change of these hydrodynamic parameters depends
on the pressure; showing exponential behavior under high pressure and linear behavior
under low pressure conditions.

By incorporating filtration, diffusion, and kinetic factors, the model provides a deeper
understanding of how pressure variations, permeability, and porosity affect the extrac-
tion process. The use of numerical methods to solve complex parabolic-type quasi-linear
eigenvalue equations is shown to be effective in simulating real-world ISL processes. The
rate of change of these hydrodynamic parameters is pressure-dependent; exhibiting expo-
nential behavior at high pressure and linear behavior at low pressure. It should be noted
that in the process of ISL, a chemical reaction occurs as a result of the reagent’s effect on
ore deposits, and the substance passes from one phase to another, as a result of which the
hydrodynamic parameters of the pore medium (filtration and porosity coefficients) and
the pressure in the ore reservoir change.

The main result of this study is the significant effect of pressure variation on hydro-
dynamic parameters, especially on injection and extraction of rhythm. These changes
directly affect the efficiency of mineral processing and possible ecological consequences
such as groundwater contamination. The proposed mathematical model, numerical solu-
tion algorithm , and software allow for improved monitoring, prediction, and optimization
of ISL operations that are both economically feasible and ecologically safe.

Future research will focus on refining this model to include dynamic factors such
as chemical interactions, multiphase flow motion, and integration of real-time field data.
Further advances in computational algorithms and software will also increase the accuracy
and applicability of simulations, leading to more sustainable and efficient mining practices.
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ТРЁХМЕРНАЯ МАТЕМАТИЧЕСКАЯ МОДЕЛЬ И
АЛГОРИТМ ЧИСЛЕННОГО РЕШЕНИЯ ДЛЯ

МОНИТОРИНГА И ПРОГНОЗИРОВАНИЯ ПРОЦЕССОВ
ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ В ПОРИСТОЙ

СРЕДЕ
Равшанов Н., *Усмонов Л.С.

*uslochinbek@gmail.com
Научно-исследовательский институт развития цифровых технологий и искусственного

интеллекта,
100125, Узбекистан, г. Ташкент, Мирзо-Улугбекский р-он, м-в Буз-2, д. 17А.

В статье анализируются гидродинамические процессы, связанные с подземной
добычей полезных ископаемых, в частности, с кислотной экстракцией драгоценных
металлов из рудных месторождений. Для комплексного изучения, мониторинга и
прогнозирования поведения объекта разработана математическая модель (ММ), ос-
нованная на фильтрационно-конвективных и диффузионных процессах, характер-
ных для фильтрации подземных флюидов. Эта модель учитывает влияние раз-
личных гидродинамических параметров, в частности, коэффициента фильтрации
и средней пористости, которые являются функциями уровня давления и кинетики
процесса. Анализ постановки задачи показывает, что изменение давления в рудной
залежи в результате заливки и извлечения раствора напрямую влияет на коэффи-
циенты проницаемости и пористости пласта. Результаты экспериментов показали,
что изменение гидродинамических параметров пропорционально изменению давле-
ния, при этом наблюдается экспоненциальная зависимость при высоком давлении и
линейная зависимость при низком давлении. Следует отметить, что в процессе под-
земного выщелачивания (ПВ) в результате воздействия реагента на рудные залежи
происходила химическая реакция и вещество переходило из одной фазы в другую,
в результате чего наблюдались изменения гидродинамических параметров поровой
среды (коэффициентов фильтрации и пористости) и давления в рудном пласте.

Ключевые слова: подземное выщелачивание, математическое моделирование, чис-
ленный алгоритм, минералы, фильтрация и диффузия жидкостей, кинетика процес-
са.
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