
Программный комплекс FrOsFHN для количественного и качественного анализа . . . 5

УДК 519.622.2

ПРОГРАММНЫЙ КОМПЛЕКС FROSFHN ДЛЯ
КОЛИЧЕСТВЕННОГО И КАЧЕСТВЕННОГО АНАЛИЗА
ДРОБНОГО ОСЦИЛЛЯТОРА ФИТЦХЬЮ-НАГУМО С

ПЕРЕМЕННОЙ ПАМЯТЬЮ*

1Алимова Н.Б., 2*Паровик Р.И.
*parovik@ikir.ru

1Ташкентский государственный университет экономики,
Узбекистан, г. Ташкент, Ислама Каримова, 49;

2Институт космофизических исследований и распространения радиоволн ДВО РАН,
Россия, Камчатский край, с. Паратунка, ул. Мирная, д. 7.

В статье дается описание и приводятся примеры работы программного комплек-
са FrOsFHN для количественного и качественного анализа нелинейного осциллятора
ФитцХью-Нагумо с переменной памятью (дробный осциллятор ФитцХью-Нагумо
(FrOsFHN)). Переменная память учитывалась в модельном уравнении осциллятора
ФитцХью-Нагумо с помощью производных типа Герасимова-Капуто переменных по
времени дробных порядков. Количественный анализ в программном комплексе был
реализован на основе численного алгоритма нелокальной явной конечно-разностной
схемы первого порядка точности, а качественный анализ - на алгоритмах визуа-
лизации численного решения в виде осциллограмм, фазовых траекторий и бифур-
кационных диаграмм. Для проведения количественного анализа была реализована
возможность выбора пользователем функциональной зависимости порядков дроб-
ных производных от времени: линейная убывающая функция, тригонометрическая
функция, убывающая экспоненциальная функция. Для построения бифуркацион-
ных диаграмм была реализована возможность учитывать помимо последовательно-
го алгоритма его параллельную версию, привлекая вычислительные ресурсы цен-
трального процессора ЭВМ. В программном комплексе реализована возможность
сохранять расчеты в текстовый файл, а также графики результатов. Программный
комплекс был написан на языке Python в среде PyCharm.
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1 Введение
Основой настоящего исследования служит классическая колебательная система

(осциллятор) ФитцХью-Нагумо [1, 2], которая была разработана в 1960-х годах как
упрощение модели Ходжкина-Хаксли [3]. Данный осциллятор описывает динамику
двух переменных: быстрой «возбуждающей» (мембранный потенциал) и медленной
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«восстанавливающей» (ток восстановления), и широко используется для моделирова-
ния автоколебательных процессов активации и деактивации нейронов. Отметим, что
помимо точечного осциллятора ФитцХью-Нагумо, существует ее пространственно-
распределенный вариант, учитывающий распространение возбуждения и описывае-
мый уравнениями диффузионного типа [4].

Обобщение классического осциллятора ФитцХью-Нагумо, которое включало учет
эффекта наследственности, впервые было предложено в работах [6–8]. Напомним, что
наследственность – это свойство системы сохранять память о предыдущих состояни-
ях, в том числе в условиях внешнего воздействия, отклик на которое проявляются
с задержкой во времени. Математический аппарат для описания таких систем осно-
ван на интегро-дифференциальных уравнениях вольтеровского типа [9]. В частном
случае, если степенная функция памяти, то модельные интегро-дифференциальные
уравнения могут быть сведены к дифференциальным уравнениям с дробными про-
изводными [5], а соответствующий осциллятор будет называться дробным [10]. В ста-
тьях [6–8] исследовался дробный осциллятор ФитцХью-Нагумо в терминах дробной
производной Герасимова-Капуто постоянного порядка [11, 12] и постоянной интен-
сивности раздражителя, далее были исследованы количественные и качественные
свойства его решения, которые характеризует тот или иной колебательный режим.

В работах [13, 14] было проведено дальнейшеее развитие исследования дробного
осциллятора ФитцХью-Нагумо, которое заключалось в учете переменных по времени
порядков дробных производных типа Герасимова-Капуто и интенсивности раздра-
жителя. Было показано с помощью компьютерных экспериментов, что в этом случае
существуют предельные циклы, которые могут быть устойчивыми. С помощью би-
фуркационных диаграмм было показана смена различных колебательных режимов
в зависимости от изменения значений ключевых модельных параметров.

Целью настоящей работы является разработка программного комплекса, который
позволит проводить количественный и качественный анализ колебательных режимов
дробного осциллятора ФитцХью-Нагумо с переменной памятью и интенсивностью
раздражителя.

2 Постановка задачи
Рассмотрим следующую задачу Коши [14]:

𝜕
𝛼(𝑡)
0𝑡 𝑥 (𝑡)− 𝑐

(︀
𝑥2 (𝑡) + 𝑝

)︀
𝜕
𝛽(𝑡)
0𝑡 𝑥 (𝑡) + 𝑞𝑥 (𝑡) + 𝑔𝑥3 (𝑡) = 𝑎+ 𝑏𝑧 (𝑡) ,

𝑥 (0) = 𝑘1, 𝑥̇ (0) = 𝑘2,
(1)

где 𝑎, 𝑏, 𝑐 – константы, удовлетворяющие условиям 1− 2𝑏/3 < 𝑎 < 1, 0 < 𝑏 < 1, 𝑏 < 𝑐2,
𝑥 (𝑡) ∈ 𝐶2 [0, 𝑇 ] – мембранный потенциал, 𝑞, 𝑔 > 0 – заданные константы, 𝑧 (𝑡) ∈
𝐶 [0, 𝑇 ] – функция внешнего воздействия, которая отвечает за интенсивность раздра-
жителя, 𝑡 ∈ [0, 𝑇 ] – время рассматриваемого процесса, 𝑇 > 0 – время моделирования,
𝑘1, 𝑘2 – константы, которые определяют начальные условия, операторы дробных про-
изводных переменных порядков имеют вид:

𝜕
𝛼(𝑡)
0𝑡 𝑥(𝑡) =

1

Γ(2− 𝛼 (𝑡))

𝑡∫︁
0

𝑥̈(𝜏)𝑑𝜏

(𝑡− 𝜏)𝛼(𝑡)−1
,

𝜕
𝛽(𝑡)
0𝑡 𝑥(𝑡) =

1

Γ(1− 𝛽 (𝑡))

𝑡∫︁
0

𝑥̇(𝜏)𝑑𝜏

(𝑡− 𝜏)𝛽(𝑡)
,
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понимаются в смысле типа Герасимова-Капуто [11, 12] с дробными 1 < 𝛼 (𝑡) < 2,
0 < 𝛽 (𝑡) < 1 являются функциями из класса 𝐶 [0, 𝑇 ].

Отметим, что свойства производных дробных переменных порядков, а также
ссылки на соответствующие литературные источники можно найти в обзорных ста-
тьях [15, 16].

Задачу Коши (1) мы будем называть дробным осциллятором ФицХью-Нагумо.
Он описывает нелинейные автоколебания с учетом переменной наследственности и
внешнего воздействия (интенсивностью раздражителя).

Отметим, что в случае, когда 𝛼 (𝑡) , 𝛽 (𝑡) , 𝑧 (𝑡) являются константами мы приходим
к результатам, полученным в работах [6–8]. В случае, когда
𝛼 (𝑡) = 𝛽 (𝑡) = 1 и 𝑧 (𝑡) является константой, то мы переходим к классическому
осциллятору ФитцХью-Нагумо [1, 2].

В работах [13, 14] в качестве методики решения задачи Коши (1) был выбран
численный алгоритм на основе нелокальной явной конечно-разностной схеме. В ста-
тье [14] с помощью правила Рунге и компьютерного моделирования было показано,
что вычислительная точность численного алгоритма при увеличении узлов расчет-
ной сетки стремиться к единице.

Также можно отметить, что численный алгоритм условно устойчив, это опреде-
ляется ограничением на шаг дискретизации расчетной сетки.

В настоящей работе мы дадим описание программному комплексу FrOsFHN, в
котором был реализован, указанный выше численный алгоритм для расчета осцил-
лограмм, фазовых траекторий и бифуркационных диаграмм.

3 Программный комплекс FrOsFHN
Программный комплекс FrOsFHN был разработан на языке Python [17] в среде

PyCharm [18]. Программный комплекс имеет простой понятный интерфейс (рис. 1).

Рис. 1 Скриншот главного окна "Основные расчеты"программного комплекса FrOsFHN
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На рис.1 мы видим, что интерфейс главного окна "Основные расчеты" имеет по-
ля для ввода пользователем значений параметров дробного осциллятора ФитцХью-
Нагумо (1) и возможности проведения расчета по численному алгоритму, основан-
ному на нелокальной явной конечно-разностной схеме первого порядка [14].

Псевдокод алгоритма основного расчета по данной схеме приведен ниже.

Алгоритм 1 CalculateSystem(𝑝𝑎𝑟𝑎𝑚𝑠)

Вход: Параметры системы: 𝑇,𝑁, 𝑐, 𝑧0, 𝑎0, 𝑏0, 𝛼0, 𝑘1, 𝛽0, 𝑘2,𝑀, 𝜔, 𝑥0, 𝑦0
Выход: Массивы 𝑥, 𝑦, 𝑧, 𝛼, 𝛽
1: 𝜏 ← 𝑇/𝑁
2: 𝑝← 𝑏20/𝑐− 1
3: 𝑞 ← 1− 𝑏0
4: 𝑔 ← 𝑏0/3
5: Инициализировать массивы: 𝑥[0..𝑁 ], 𝑦[0..𝑁 ], 𝑧[0..𝑁 − 1], 𝛼[0..𝑁 − 1], 𝛽[0..𝑁 −
− 1], 𝐴[0..𝑁 − 1], 𝐵[0..𝑁 − 1]

6: 𝑥[0]← 𝑥0, 𝑦[0]← 𝑦0
7: 𝑥[1]← 𝜏 · 𝑦[0] + 𝑥[0]
8: 𝑦[1]← (𝑥[1]− 𝑥[0])/𝜏
9: для 𝑖 = 0 to 𝑁 − 1

10: 𝑧[𝑖]← 𝑧0 +𝑀 · sin(𝜔 · 𝜏 · 𝑖)
11: 𝛼[𝑖], 𝛽[𝑖]← CalculateAlphaBeta(𝑖, 𝜏, 𝑇, 𝛼type, 𝛽type, 𝛼0, 𝑘1, 𝛽0, 𝑘2, 𝜔1, 𝜙1, 𝜔2, 𝜙2)
12: Ограничить 𝛼[𝑖] ∈ [0.001, 2.0], 𝛽[𝑖] ∈ [0.001, 1.0]
13: 𝐴[𝑖]← 𝜏−𝛼[𝑖]/Γ(3− 𝛼[𝑖])
14: 𝐵[𝑖]← 𝜏−𝛽[𝑖]/Γ(2− 𝛽[𝑖])
15: для 𝑘 = 1 to 𝑁 − 1
16: 𝑆1 ← 0, 𝑆2 ← 0
17: для 𝑗 = 1 to 𝑘 − 1
18: 𝑆1 ← 𝑆1 +

[︀
(𝑗 + 1)1−𝛽[𝑘] − 𝑗1−𝛽[𝑘]

]︀
· (𝑥[𝑘 − 𝑗 + 1]− 𝑥[𝑘 − 𝑗])

19: 𝑆2 ← 𝑆2 +
[︀
(𝑗 + 1)2−𝛼[𝑘] − 𝑗2−𝛼[𝑘]

]︀
· (𝑥[𝑘 − 𝑗 + 1]− 2𝑥[𝑘 − 𝑗] + 𝑥[𝑘 − 𝑗 − 1])

20: numerator ← 𝑎0 + 𝑏0 · 𝑧[𝑘] + (2𝐴[𝑘] + 𝑐 · 𝐵[𝑘] · (𝑥[𝑘]2 + 𝑝) − 𝑞) · 𝑥[𝑘] − 𝑥[𝑘]3 · 𝑔 −
− 𝐴[𝑘] · 𝑥[𝑘 − 1]−𝐵[𝑘] · 𝑐 · (𝑥[𝑘]2 + 𝑝) · 𝑆1 − 𝐴[𝑘] · 𝑆2

21: denominator← 𝐴[𝑘] + 𝑐 ·𝐵[𝑘] · (𝑥[𝑘]2 + 𝑝)
22: если |denominator| < 𝜀 то
23: 𝑥[𝑘 + 1]← 𝑥[𝑘]
24: иначе
25: 𝑥[𝑘 + 1]← numerator/denominator
26: 𝑦[𝑘 + 1]← (𝑥[𝑘 + 1]− 𝑥[𝑘])/𝜏
27: return 𝑥, 𝑦, 𝑧, 𝛼, 𝛽

Также на рис. 1 мы можем увидеть возможность вывода результатов расчета в
отдельном графическом окне. Выводятся следующие графики: осцилограммы для
мембранного потенциала 𝑥 (𝑡) и его скорости 𝑦 (𝑡) = 𝑥̇ (𝑡), фазовой траектории, по-
строенной по координатам (𝑥 (𝑡) , 𝑦 (𝑡)), функции внешнего воздействия или интен-
сивности раздражителя 𝑧 (𝑡), функций порядков 𝛼 (𝑡) и 𝛽 (𝑡) дробных производных
типа Герасимова-Капуто.

Функция интенсивности раздражителя 𝑧 (𝑡) реализована в Алгоритме 1 виде три-
гонометрической функции. Кроме того, функции 1 < 𝛼 (𝑡) < 2 и 0 < 𝛽 (𝑡) < 1 можно
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выбирать из выпадающего списка "Тип зависимости" в виде убывающих линейных
функций, тригонометрических функций, убывающих экспоненциальных функций,
причем эти функции можно комбинировать между собой.

В программе реализован также контроль за значениями этих функций, кото-
рые не должны выходить за рамки соответствующих диапазонов. Алгоритм выбора
функций 𝛼 (𝑡) и 𝛽 (𝑡) в программном комплексе можно представить в следующем
псевдокоде (Алгоритм 2).

Алгоритм 2 CalculateAlphaBeta(𝑖, 𝜏, 𝑇, 𝛼type, 𝛽type, 𝛼0, 𝑘1, 𝛽0, 𝑘2, 𝜔1, 𝜙1, 𝜔2, 𝜙2)

Вход: Индекс 𝑖, шаг 𝜏 , общее время 𝑇 , типы зависимостей, параметры
Выход: Значения 𝛼, 𝛽
1: // Вычисление 𝛼[𝑖]
2: если 𝛼type = linear то
3: 𝛼← 𝛼0 − 𝑘1 · 𝜏 · 𝑖/𝑇
4: иначе если 𝛼type = cosine то
5: 𝛼← 𝛼0 − 𝑘1 · cos(𝜏 · 𝑖 · 𝜔1 + 𝜙1)
6: иначе если 𝛼type = exponential то
7: 𝛼← 𝛼0 − 𝑘1 · exp(−𝜏 · 𝑖 · 𝜔1)
8: иначе
9: 𝛼← 𝛼0 − 𝑘1 · 𝜏 · 𝑖/𝑇 // линейная по умолчанию

10: // Вычисление 𝛽[𝑖]
11: если 𝛽type = linear то
12: 𝛽 ← 𝛽0 − 𝑘2 · 𝜏 · 𝑖/𝑇
13: иначе если 𝛽type = cosine то
14: 𝛽 ← 𝛽0 − 𝑘2 · cos(𝜏 · 𝑖 · 𝜔2 + 𝜙2)
15: иначе если 𝛽type = exponential то
16: 𝛽 ← 𝛽0 − 𝑘2 · exp(−𝜏 · 𝑖 · 𝜔2)
17: иначе
18: 𝛽 ← 𝛽0 − 𝑘2 · 𝜏 · 𝑖/𝑇 // линейная по умолчанию
19: return 𝛼, 𝛽

На вкладке "Бифуркационные диаграммы" главного окна программного ком-
плекса FrOsFHN (рис. 2) пользователь может ввести параметры для расчета бифур-
кационной диаграммы в зависимости от значений ключевых параметров задачи (1).

Рис. 2 Скриншот окна "Бифуркационные диаграммы"программного комплекса FrOsFHN
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Напомним, что бифуркационная диаграмма – это график, который показывает,
как качественное поведение динамической системы (например, её устойчивые со-
стояния) изменяется в зависимости от значения одного или нескольких управляю-
щих параметров. В качестве таких ключевых параметров в программном комплексе
выступают параметры: 𝑎0, 𝑏0, 𝑧0, 𝑐, 𝛼0, 𝛽0, 𝑘1, 𝑘2,𝑀, 𝜔. Пользователь выбирает один из
перечисленных параметров, вводит диапазон его изменения (начальное и конечное
значения), количество точек (шаг дискретизации) в рассматриваемом диапазоне, ко-
личество точек переходного процесса. Количество точек переходного процесса – это
то количество точек, которое участвует в переходном процессе, система "забывает"
свое начальное условие и "притягивается" к своему устойчивому состоянию (аттрак-
тору). Эти точки не наносятся на бифуркационную диаграмму. Нужно здесь учиты-
вать, что количество точек должно быть достаточно большим иначе бифуркацион-
ная диаграмма будет искажена. Алгоритм построения бифуркационной диаграммы
приведен в следующем псевдокод (Алгоритм 3).

Алгоритм 3 BifurcationAnalysis(𝑝𝑎𝑟𝑎𝑚name, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑝𝑜𝑖𝑛𝑡𝑠, 𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠)

Вход: Имя параметра, диапазон, количество точек, переходный процесс, процессы
Выход: Бифуркационная диаграмма
1: paramvalues ← linspace(𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑝𝑜𝑖𝑛𝑡𝑠)
2: results← ∅
3: если 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 = 1 то
4: для 𝑖 = 0 to 𝑝𝑜𝑖𝑛𝑡𝑠− 1
5: если stopflag то
6: break
7: pointresult ← CalculateSinglePoint(paramvalues[𝑖])
8: results← results ∪ pointresult
9: UpdateProgress(𝑖/𝑝𝑜𝑖𝑛𝑡𝑠)

10: иначе
11: executor← ProcessPoolExecutor(𝑚𝑎𝑥_𝑤𝑜𝑟𝑘𝑒𝑟𝑠 = 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠)
12: futures← ∅
13: для 𝑝𝑎𝑟𝑎𝑚value ∈ paramvalues
14: если stopflag то
15: break
16: 𝑓𝑢𝑡𝑢𝑟𝑒← executor.submit(CalculateSinglePoint, 𝑝𝑎𝑟𝑎𝑚value)
17: futures← futures ∪ {𝑓𝑢𝑡𝑢𝑟𝑒}
18: 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑← 0
19: для 𝑓𝑢𝑡𝑢𝑟𝑒 ∈ as_completed(futures)
20: если stopflag то
21: CancelRemainingFutures()
22: break
23: result← future.result()
24: results← results ∪ result
25: 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑← 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑+ 1
26: UpdateProgress(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑/𝑝𝑜𝑖𝑛𝑡𝑠)
27: executor.shutdown()
28: PlotBifurcationDiagram(results)
29: SaveResults(results)
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В Алгоритме 3 для параллельных вычислений на CPU используется процедура
ProcessPoolExecutor (Алгоритм 4).

Алгоритм 4 Использование ProcessPoolExecutor для параллельных вычислений
1: Инициализация многопроцессорности: InitializeMultiprocessing
2: cpu_cores← multiprocessing.cpu_count() // Определение количества ядер
3: processes← min(user_input, cpu_cores) // Ограничение разумным значением
4: executor← ProcessPoolExecutor(max_workers=processes)
5: futures← [ ] // Массив для отслеживания задач
1: Параллельное выполнение задач: ParallelExecutionparam_values, base_-

params, param_name, transient
2: Создание задач:
3: для each param_value ∈ param_values
4: если stop_calculation то

break
5: args← (base_params.copy(), param_value, param_name, transient)
6: future← executor.submit(calculate_single_point, args)
7: futures← futures ∪ future
8: Обработка результатов:
9: completed← 0

10: total← len(param_values)
11: results← [ ]
12: для each future ∈ as_completed(futures)
13: если stop_calculation то
14: CancelAllFutures()
15: break
16: result← future.result() // Блокировка до получения результата
17: results← results ∪ result
18: completed← completed + 1
19: UpdateProgress(completed, total)
20: return results
1: Архитектура пула процессов: ProcessPoolArchitecture
2: • Главный процесс: UI, координация, сбор результатов
3: • Worker процессы: Независимые вычисления calculate_single_point
4: • Очередь задач: Автоматическое распределение executor
5: • Межпроцессное взаимодействие: Сериализация через pickle

Основная идея распараллеливания в построении бифуркационной диаграммы –
разбиение массива значений параметра на несколько частей и вычисление каждой
такой части в отдельном процессе (потоке).

Выбор ProcessPoolExecutor определялся следующими преимуществами:

– Автоматическое управление пулом. Не нужно создавать/удалять процессы вруч-
ную.

– Балансировка нагрузки. Равномерное распределение задач.
– Очередь результатов: as_completed() для обработки по готовности.
– Обработка исключенийю Исключения в воркерах не уничтожают главный про-

цесс.
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– Контроль времени жизни. Автоматическое завершение при выходе из контекста.
– Кроссплатформенность. Работает на Windows/Linux/MacOS.

Особенность Алгоритма 4 заключается в том, что он автоматически вычисляет
количество потоков центрального процессора (CPU). Это дает дополнительную ин-
формацию пользователю об оптимальном выброре необходимого количество потоков
для построения бифуркационной диаграммы. Также выводится информация в виде
текстого сообщения о времени выполнения алгоритма и нагрузке на CPU в процен-
тах. Кроме того, если выбраны не верные параметры алгоритма, то всегда можно
остановить расчет и провести его коррекцию.

4 Результаты исследования
Рассмотрим некоторые примеры работы программного комплекса FrOsFHN.

Пример 1. Классический осциллятор ФитцХью-Нагумо [1, 2]. Значения парамет-
ров задачи выберем как на рис. 1, бифуркационная диаграмма приведена на рис.2.
Отметим, что на рис. 1 построен пример для классического осциллятора ФитцХью-
Нагумо, когда 𝑧 (𝑡) = 𝑧0 является константой, а 𝛼 (𝑡) = 𝛼0 = 2, 𝛽 (𝑡) = 𝛽0 = 1.

Бифуркационная диаграмма на рис. 2 указывает на то, что есть две области
кардинального изменения функции 𝑥 (𝑎0): 𝑎0 ∈ [0.01, 0.69] и 𝑎0 ∈ [0.7, 1]. Выберем
значения из этих областей и построим фазовые траектории (рис. 3).

а) б)

Рис. 3 Фазовые траектории классического осциллятора ФитцХью-Нагумо: a) 𝑎0 = 0.4, б)
𝑎0 = 0.75

На рис. 3 мы видим, что фазовая траектория (рис. 3a) выходит на предельный
цикл, характеризующая релаксационные колебания, а фазовая траектория (рис. 3б)
представляет собой закручивающуюся спираль около точки равновесия системы, ко-
торая называется устойчивым фокусом. Кроме того известно, что модельное уравне-
ние классческого осциллятора ФитцХью-Нагумо принадлежит к классу уравнений
льенаровского типа [19]. Поэтому предельный цикл на рис. 3a является единствен-
ным и устойчивым.

Исходя из выше сказанного, мы можем сделать вывод о том, что мембранный
потенциал 𝑥 (𝑎0) при 𝑎0 ∈ [0.01, 0.69] совершает релаксационные колебания, на ин-
тервале 𝑎0 ∈ [0.7, 1] – затухающие колебания. Отметим, что в точках, граничащих с
точками смены этих режимов, могут возникать и другие режимы (рис. 4).
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а) б)

Рис. 4 Фазовые траектории классического осциллятора ФитцХью-Нагумо:
a) 𝑎0 = 0.69031047, б) 𝑎0 = 0.69031048

На рис. 4a приведена фазовая траектория, построенная при значении
𝑎0 = 0.69031047 и которая описывает двух периодичный колебательный режим. Од-
нако уже при значении 𝑎0 = 0.69031048 фазовая траектория описывает другой коле-
бательный режим (рис. 4б): сначала фазовая траектория наматывается с каким-то
периодом, а потом срывается в закручиавющуся спираль.
Пример 2. Дробный осциллятор ФитцХью-Нанумо [6–8]. Мы выберем значение
𝛽0 = 0.7, количество точек для построения бифуркационной диаграммы 800, осталь-
ные параметры остаются без изменения.

На рис. 5 мы видим две бифуркационные диаграммы, потроенные при 𝛼0 = 1.6
(рис. 5а) и при 𝛼0 = 1.8 (рис. 5б).

а)

б)

Рис. 5 Фазовые траектории классического осциллятора ФитцХью-Нагумо:
a) 𝛼0 = 1.6, б) 𝛼0 = 1.8
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При уменьшении значений 𝛼0 сужается область релаксационных колебаний, об-
ласть затухающих колебаний расширяется. Это подтверждает полученные ранее ре-
зультаты о том, что порядок дробной производной 𝛼0 связан с добротностью коле-
бательной системы [20, 21].
Пример 3. Дробный осциллятор ФитцХью-Нагумо [14]. Значения параметров:
𝑇 = 100, 𝑁 = 3000, 𝛼0 = 1.8, 𝛽0 = 0.9, 𝑧0 = −0.4, 𝑐 = 3, 𝑏0 = 0.8, 𝑘1 = 0.03,
𝑘2 = 0.01,𝑀 = 0.3, 𝜔 = 1.25, 𝜔1 = 3, 𝜔2 = 1.5, 𝜙1 = 𝜙2 = 0.

Выбирем функции в задаче Коши (1):

𝑧 (𝑡) = 𝑧0 +𝑀 sin (𝜔𝑡) , 𝛼 (𝑡) = 𝛼0 − 𝑘1 cos(𝜔1𝑡+ 𝜙1), 𝛽 (𝑡) = 𝛽0 − 𝑘2 cos(𝜔2𝑡+ 𝜙2), (2)

что соответствует методу cosine в главном окне программного комплекса на вкладке
"Основные расчеты".

На рис.6 приведена бифуркационная диагамма для Примера 3. Здесь мы видим
две области измененния параметра 𝑎0, в которых существуют режимы отличные друг
от друга. Например, на рис. 6 приведены фазовые траектории при значениях 𝑎0 = 0.6
и 𝑎0 = 0.8.

Рис. 6 Бифуркационная диаграмма 𝑥 (𝑎0) для Примера 3

На рис. 7а фазовая траектория соответствует хаотическому режиму (хаотиче-
ский аттрактор), а на рис. 7б фазовая траектория соответствует предельному циклу,
который определяется зависимостью 𝑧 (𝑡) в формуле (2).

а) б)

Рис. 7 Фазовые траектории дробного осциллятора ФитцХью-Нагумо [14]:
a) 𝑎0 = 0.6, б) 𝑎0 = 0.8
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Наличие хаотических режимов указывает на то, что необходимо дополнительно
их исследовать, например, с помощью методов нелинейной динамики, определить
условиях их существования. Однако такое исследование выходит за рамки настоящей
статьи.

5 Заключение
В работе дается описание и приводятся примеры работы программного комплек-

са FrOsFHN, написанного на языке программирования Python для качественного
и количественного анализа дробного осциллятора ФитцХью-Нагумо с переменной
памятью и внешним воздействием. Программный комплекс позволяет с помощью
нелокальной явной конечно-разностной схемы с первым порядком точности строить
графики осциллограмм, фазовых траекторий и бифуркационных диаграмм в зави-
симости от различных значений параметров. В программном комплекса реализована
возможность выбора вида функций от времени для порядков дробных производных
типа Герасимова-Капуто и для внешнего воздействия – интенсивности раздражите-
ля.

В статье приводятся описание основных алгоритмов реализованных в программ-
ном комплексе, в том числе алгоритмы распараллеливания на CPU для расчета би-
фуркационных диаграмм. Также показана работа программного комплекса на неко-
торых примерах. Результаты, полученные в рамках рассматриваемых примеров, со-
гласуются ранее известными результатами, что в свою очередь указывает на кор-
ректность реализации алгоритмов расчета.

Дальнейшее продолжение работы связано с построением бифуркационных диа-
грамм в зависимости от значений других ключевых параметров дробного осциллято-
ра ФитцХью-Нагумо. Согласно полученным бифуркационным диаграммам провести
установление различных динамических режимов, которые будут подтверждены ос-
циллограммами и фазовыми траекториями. Другое направление исследований свя-
зано с изучением условий существования хаотических режимов с помощью методов
нелинейной динамики, а также построение карт динамических режимов, для кото-
рого потребуется привлечь значительные вычислительные ресурсы.
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This article describes and provides examples of the FrOsFHN software package for
the quantitative and qualitative analysis of a nonlinear FitzHugh-Nagumo oscillator with
variable memory (the fractional FitzHugh-Nagumo oscillator (FrOsFHN)). Variable mem-
ory was taken into account in the FitzHugh-Nagumo oscillator model equation using
fractional-order derivatives of the Gerasimov-Caputo type with respect to time. The
quantitative analysis in the software package was implemented based on a numerical al-
gorithm for a nonlocal explicit finite-difference scheme of first-order accuracy, and the
qualitative analysis was implemented using algorithms for visualizing the numerical so-
lution in the form of oscillograms, phase trajectories, and bifurcation diagrams. To
conduct the quantitative analysis, the user was able to select the functional dependence
of the fractional derivative orders on time: a linear decreasing function, a trigonometric
function, or a decreasing exponential function. To construct bifurcation diagrams, we
implemented the ability to consider a parallel version of the algorithm in addition to the
sequential version, leveraging the computing resources of the computer’s central proces-
sor. The software package also features the ability to save calculations to a text file, as
well as result graphs. The software package was written in Python using the PyCharm
environment.

Keywords: FitzHugh-Nagumo fractional oscillator, oscillograms, phase trajectories,
nonlocal explicit finite-difference scheme, algorithms, Python, PyCharm, bifurcation di-
agram.
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